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ABSTRACT 

Autonomous vehicle system performance is limited by 

uncertainties inherent in the driving environment and 

challenges in processing sensor data. Engineers thus face the 

design decision of biasing systems toward lower sensitivity 

to potential threats (more misses) or higher sensitivity (more 

false alarms). We explored this problem for Automatic 

Emergency Braking systems in Level 3 autonomous 

vehicles, where the driver is required to monitor the system 

for failures. Participants (N=48) drove through a simulated 

suburban environment and experienced detection misses, 

perfect performance, or false alarms. We found that driver 

vigilance was greater for less-sensitive braking systems, 

resulting in improved performance during a potentially fatal 

failure. In addition, regardless of system bias, greater levels 

of autonomy resulted in significantly worse driver 

performance. Our results demonstrate that accounting for the 

effects of system bias on driver vigilance and performance 

will be critical design considerations as vehicle autonomy 

levels increase. 
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Figure 1. Driving simulator scenario built to represent a Level 

3 autonomous vehicle  

INTRODUCTION 
In a well-known illustration from the Saturday Evening Post 

from the 1950s, a glass bubble-topped car with large tailfins 

drives itself along a highway while its passengers relax over 

a game of dominoes [11]. While we are getting closer to 

realizing this prospect, autonomous vehicle systems in 

development today are still limited by their abilities to sense, 

process, interpret, and anticipate the full driving 

environment, and no system is entirely impervious to noise 

and misses. Any driving environment inherently contains a 

diversity of factors, such as other vehicles, pedestrians, and 

debris on the road—and the system needs to accurately 

detect and react to all of them. For instance, the system must 

properly classify a dog and avoid collision, while correctly 

rejecting a plastic bag blown by the wind [37]. Given these 

limitations, OEMs and engineers face the design challenge 

of biasing systems toward greater sensitivity and higher 

likelihood of false alarms (such as when the system triggers 

even though there is no collision threat), or toward lesser 

sensitivity and greater likelihood of a miss. The challenge 

becomes even more difficult as the vehicle system’s level of 

autonomy increases, and consequently, driver vigilance and 

performance also change [20].  
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Automatic Emergency Braking (AEB) is one critical system 

component that designers must decide how to bias. AEBs can 

be present as either the single automated aspect of a vehicle 

or as one component of a higher-level autonomous system. 

In all levels of automation, when an obstacle and hazard is in 

the car’s path and a collision is imminent, AEB can 

effectively provide an alert and automated braking, 

preventing collision independent of driver action [7, 37]. 

However, the AEB system can also pose a potential hazard, 

as when unnecessary braking occurs and causes a rear-end 

collision [55]. Moreover, when the AEB system provides too 

many false alarms, drivers can end up ignoring the AEB 

because it becomes a nuisance [3]. Complacency is yet 

another problem, whereby drivers become so dependent on 

the alert system that they rely completely on the system and 

fail to respond if the system fails [54]. 

This study explored the effects on drivers of various 

sensitivity levels of an AEB system present in Level 3 

autonomous vehicles, where the system is mostly 

autonomous, but still requires some human operation and 

supervision. We investigated how various sensitivity settings 

for the AEB system influence driver awareness and 

performance. We build on the work of Fu et al., where 

participants were provided with a vehicle with a lower level 

of autonomy: a Level 1 autonomous vehicle, where the AEB 

was the only automated driver assist component [14]. Fu et 

al. found that drivers with an imperfect AEB were better at 

avoiding a critical collision when the AEB failed. To better 

understand how increases in autonomy affect driver 

performance, this study contained the same varying levels of 

system sensitivity as Fu et al., but used a vehicle capable of 

greater autonomy. 

Participants were driven by a vehicle through a simulated 

suburban environment we programmed (see Figure 1), where 

they experienced a system that was biased either towards 

misses, perfect performance, or false alarms. Our findings 

suggest that driver vigilance is potentially greater with less 

sensitive AEB systems, whether the vehicle is a Level 1 or 

Level 3 system. We also observe that regardless of the AEB 

system’s sensitivity level, higher levels of autonomy in 

vehicles result in reduced driver performance during 

potentially fatal events. These findings inform drivers and 

OEMs how to think about the implications of system bias, 

particularly as vehicles on the road with higher levels of 

automation become more prevalent. As the level of vehicle 

autonomy increases, but driver intervention is still required, 

we expect the effects of system bias on driver vigilance and 

performance to become more pronounced. 

BACKGROUND 

People form conceptual models and develop relationships of 

trust with interactive systems. These systems can range from 

service robots to autonomous vehicle systems [11, 47]. In 

general, the more a person interacts with a system, the 

stronger and more reliable that person’s mental model is [20, 

25, 33]. In the case of Level 3 autonomous vehicles with 

collision avoidance systems, the accuracy and 

trustworthiness of this mental model can have significant 

implications for human safety. 

The simulation system with which users interacted in our 

study builds on the abilities of a vehicle with automated 

driving capabilities and an automated emergency braking 

system. The system also builds upon the literature of human 

behavior with varying levels of autonomous systems, signal 

detection theory, trust in and reliance on automation, as well 

as acquired complacency caused by alerting systems.  

Human Vigilance and Performance with Varying Levels 
of Autonomous Systems  

The human vigilance required for operating and overseeing 

an automated system varies with different levels of 

automation. The amount of oversight required of the human 

driver when it comes to intervention and attentiveness can 

affect such vigilance [20]. 

The idea of defining Levels of Automation (LOA) for 

systems traces to the seminal work of Sheridan and Verplank 

[38]. While some criticisms of the LOA framework have 

been made, academics and professionals are generally 

supportive of its practicality and utility for categorizing and 

designing autonomous systems [10, 23, 44, 45]. The Society 

of Automotive Engineers has defined five levels of 

automation, specifically for vehicles, which have been 
widely adopted by practitioners in the field [37]. These range 

from Level 1 systems, which provide driver assistance, up to 

Level 5 systems, which steer, accelerate, and monitor the 

environment fully autonomously without the need for human 

fallbacks. An AEB, for example, could be considered a 

complete Level 1 autonomous system or a component of a 

higher-level system [10]. 

An important design consideration of autonomous systems is 

how human vigilance changes as autonomy increases. Many 

of the worst accidents involving Level 2 and Level 3 

autonomous vehicles currently deployed could have been 

prevented if the driver had been more attentive to the 

environment or driving task [16]. In fact, studies have shown 

that the driver of an autonomous vehicle can be as inattentive 

as a passenger in a human-driven vehicle, and that drivers 

can become physiologically and psychologically dependent 

on automation, resulting in less vigilance after only fifteen 

minutes of use of an autonomous system [1, 2, 48]. Although 

educating drivers about operating and interacting with 

autonomous systems may improve safety, system design 

should simultaneously be optimized [4]. However, studies 

have also identified findings such as the “prevalence 

paradox” of Sawyer and Hancock [39], which illustrates that 

when a system usually performs with high accuracy, a human 

user may be less vigilant in detecting and reacting to a system 

failure than if the system fails frequently. Additionally, 

heads-up display systems such as Google Glass, which aim 

to improve users’ performance, may impair driver vigilance 

due to excessive information being provided [40]. 



While there are biometric and psychological means of 

assessing vigilance, a practical proxy for vigilance is 

measuring driver performance. For example, Sawyer and 

Hancock found that driving performance declined when 

users composed text messages through an automated 

assistive system, suggesting that the system impaired 

drivers’ vigilance [38]. Johns et al. found that driving 

performance can vary significantly under varying levels of 

automation capabilities. When a transition from autonomous 

to manual control occurred, drivers were likely to suddenly 

apply much greater steering action when active steering or 

full autonomy was present, compared to only adaptive cruise 

control or full manual operation [20]. Johns et al. also 

concluded that low cognitive load can lead to vigilance 

decline and thereby impair driving performance. They even 

suggested that performing unrelated tasks, such as reading a 

book while piloting an autonomous vehicle, could increase 

cognitive load to the benefit of driving performance in the 

case of a transition of control to the driver [21].  

Automated Emergency Braking Systems  

Automated emergency braking (AEB) systems aim to 

prevent or significantly reduce the impact of frontal 

collisions. The potential life-saving benefits of AEB systems 

have led to their being required in passenger vehicles in the 

United States by 2022 [51]. However, these systems are 

challenging to design and implement; for instance, because 

of the AEB, rear-end collisions may occur with other 

vehicles, pedestrians, or other objects in roadways, and 

systems must be designed to handle such diverse obstacles 

while maintaining high accuracy. Despite advances in 

technologies such as RADAR, visual spectrum cameras, and 

sensor fusion used to power emergency braking systems, no 

emergency braking system is expected to have perfect 

accuracy [15, 26, 46]. Hence, there is an outstanding design 

question of whether to bias these systems towards reporting 

more erroneous false positives or towards being less 

sensitive to potential collision scenarios. 

Since AEB systems are commonly restricted to detecting 

frontal collisions, there are clear risks associated with 

activating the system. In particular, the typically sudden 

nature of an emergency braking system activation can 

increase the likelihood of a rear-end collision if there is other 

traffic on the road; in some cases, this may be a worthwhile 

trade-off, but in the case of a false alarm, such braking clearly 

does more harm than if the system had not been activated 

[17]. On the other hand, under-reporting potential frontal 

collisions increases the risk of injury to the driver, 

pedestrians, and other drivers, and so a bias towards false 

alarms may be preferable to a bias towards underreporting 

[7]. Regardless, many AEB systems are designed to avoid a 

black-and-white decision of whether to activate; that is, a 

two-stage activation model is implemented whereby the 

system alerts, waits for driver action, and subsequently 

actuates the brakes only if the driver response is deemed 

insufficient [27]. This gives the driver an opportunity, albeit 

a brief one, to avoid an accident in a way that may be 

preferable to the course of action taken by the AEB system 

(such as steering away from danger or only partially 

actuating the brakes in heavy traffic). The simulated system 

used in this study follows this two-stage design of collision 

warning and automated braking. 

Signal Detection Theory   

Since our model AEB system may have false positives 

and/or false negatives, it is important to discuss signal 

detection theory (SDT), which studies the classification of 

and reaction to signals [30, 49]. A typical AEB system will 

predominantly detect noise (the lack of any impending 

collisions); however, it will occasionally detect a legitimate 

signal. SDT categorizes the presence or absence of a signal, 

along with whether the signal/noise is detected as a signal 

(see Table 1). In the case of autonomous driving systems, the 

signal detection matrix is repeated across two stages: first, 

the autonomous system will attempt to perform its duty, but 

if it fails, an overall successful outcome depends on the 

human operator performing any necessary driving 

maneuvers. Hence, both autonomous and human systems 

must fail to result in an overall signal detection failure, but 

the success of either system results in a signal being correctly 

detected.  

 
Signal Absent 

(noise) 

Signal Present  

(noise + signal) 

No Detection 
Correct 

Rejection 
Miss 

Detection False Alarm Correct Detection (hit) 

Table 1. Signal Detection Theory on the presence or absence of 

a signal and then the response to it  

While ample research has investigated machine sensing and 

classification, as well as humans’ abilities to detect and 

classify signals, we focused on the interplay of these two 

systems [50]. Our research was motivated by the question of 

how to bias an imperfect AEB system’s evaluation of the 

four possible outcomes in order to increase overall success 

rates. We are interested in whether and how changes in the 

sensitivity of AEB and other autonomous systems; in other 

words, biases towards the different failure modes 

summarized in Table 1, affect drivers’ behavior and 

particularly their reactions to potentially fatal accidents. 

Automation, Trust and Reliance  

Drivers need to trust autonomous systems to effectively use 

them. Neigel et al. demonstrated a correlation between trust 

in an autonomous system and task performance using the 

system [32]. Moreover, Mayer et al. characterize trust in 

automation as “the willingness of a party to be vulnerable to 

the actions of another party based on the expectation that the 

other will perform a particular action important to the 

trustor”; this definition includes risk of driver surprise from 

or driver disappointment in the imperfect performance of a 

system [31]. The risks focused on in this study are that a 

collision could occur if an AEB system fails to activate, and 

that accidents such as rear-end collisions could needlessly 



occur if the automated emergency braking system activates 

when there is no danger of a frontal collision. 

When evaluating humans’ trust in autonomous systems, it is 

useful to understand driver perception of such a system’s 

reliability and trustworthiness, as well as their preconceived 

trust in technology at large. To measure these factors in our 

study, we used the questionnaire proposed by Jian et al. [18]. 

Users’ mental models, and in particular trust, of a system can 

change through interaction with the system, and this trust can 

be measured by observing how much a user relies on a 

system over the course of repeated use. 

Although sufficient trust is important, in the case of an AEB 

system, it is equally important that a user does not overtrust 

the system. Accidents due to overtrusting autonomous 

driving systems, which have been scrutinized in the media, 

highlight drivers’ tendencies to maintain insufficient 

vigilance over the course of long drives, particularly in the 

presence of automation [29, 43]. Instead, users of AEB 

systems require calibrated trust based on an accurate 

perception of the system’s performance. Lee and See clarify 

that this calibration is part of the user’s mental model of the 

system and is developed via repeated interactions with the 

system [28]. In general, a user should ideally build a 

calibrated trust model based on many interactions with the 

system across a wide variety of scenarios, and the user should 

only rely on a system that has demonstrated a sufficiently 

acceptable level of calibrated trust. AEB systems present a 

particular challenge for this development of calibrated trust 

because an experienced driver will rarely encounter a 

positive signal from an AEB system. Hence, given that users 

will have minimal prior experience when such a system 

activates, the design and bias of automated emergency 

braking systems is especially important.  

Alert Fatigue and Complacency  

Alert fatigue occurs when users begin to ignore alerts from a 

system after too many false positives or non-actionable alerts 

have been issued. When a legitimate, actionable alert is 

produced by a system, users with alert fatigue are less likely 

to act upon the alert, diminishing the system’s efficacy [9]. 

Similarly, if humans put too much trust in a system or are 

overwhelmed by many non-essential alerts, they can become 

complacent, which can lead to lack of vigilance, and fail to 

be ready to manually intervene in critical situations when 

systems fail to alert or critically alert. This complacent 

behavior may be characterized as a primary-secondary task 

inversion, where a user’s primary task of paying attention is 

subsumed by the secondary task of passively monitoring for 

alerts and alarms [54]. Operators’ alert fatigue and 

complacency have been thoroughly studied in the case of 

pilots and aviation [5, 6, 34]. 

Despite some similarities between piloting air and driving 

land vehicles, it is important to study alert fatigue and 

complacency within the automotive setting. Road and flight 

settings differ in significant ways: the degree of initial and 

ongoing training and experience for pilots versus drivers, the 

distances between nearby planes versus cars, and the time 

frames between alerts and collisions [42, 53]. For example, 

pilots may have several minutes to correct an issue with an 

aviation system if they are mid-flight; however, in the case 

of automobile accidents, drivers typically only have a few 

seconds at most to determine the best course of action in the 

face of a potentially fatal situation. These differences 

motivated us to consider that operator behavior and 

performance across contexts may vary significantly. 

STUDY GOALS AND METHODS 

We hypothesize that for a Level 3 autonomous system that 

fails to offer enough alerts when real hazards exist, drivers 

will increase their vigilance to compensate for the system’s 

poor performance. Alternatively, if the system has perfect 

performance, drivers’ vigilance will decrease, as 

complacency sets in, and thereby lower their abilities to 

respond to hazards that the system doesn’t recognize or 

respond to. And if the system exhibits false alarms, we 

hypothesize that drivers’ vigilance will decrease as they start 

to consider the system to be a distraction or nuisance, and 

thereby ignore it. We also hypothesize driver performance to 

worsen in Level 3 systems, given lower human vigilance 

required to operate the vehicle, in contrast to Level 1 

systems.  

To investigate our hypotheses, we designed a simulated 

driving experience that explored the formation and use of a 

metal model of system performance by biasing towards 

different failure modes, and we compared how such varying 

sensitivity levels in systems affects driver performance in a 

potentially fatal failure. We then compared our results with 

those of Fu et al., which studied AEB sensitivity levels in a 

lower-level automated system [14].  

Participants  

Participants between the age of 18 to 60 years old (M = 26.72 

years, Mdn = 23 years, SD = 8.41 years) were recruited using 

flyers and emails and were compensated for their time with 

an Amazon gift card. Participants’ driving experience ranged 

from 2 to 43 years (M = 10.71 years, Mdn = 8 years, SD = 

8.95 years). Participants reported driving between 0.3 and 7 

days per week (M = 4.02 days, Mdn = 4 days, SD = 2.59 

days). 
 

 

 

Training 

Course 

Misses Perfect Perfect 
False 

Alarms 

3 misses 

6 correct 

detections 

9 correct 

detections 

9 correct 

detections 

3 false 

alarms 

6 correct 

detections 

Final Event Detection Failure Brake Failure 

Number of 

Participants 
N = 12 N = 12 N = 12 N = 12 

Table 2. Experimental conditions 



Driving Simulator and Study Context  

The study was conducted in a fixed-base driving simulator 

using a full-vehicle cab, 270° wrap-around screen, rear-view 

screen, separate video channels for rear view mirrors as well 

as full audio system (see Figure 1).  

Participants were provided with a Level 3 autonomous 

vehicle that contained an emergency braking system with 

varying levels of sensitivity. The experiment comprised two 

sections: a training course and a final event (see Table 2). In 

the training course, the vehicle encountered nine pedestrian 

events—some were potential hazards, while others were not. 

Participants were assigned to one of three training groups, 

which dictated how the vehicle responded to the pedestrians: 

under-sensitive system biased towards misses, over-sensitive 

system biased towards false alarms, or perfect performance. 

This design allowed participants to form a mental model of 

the system’s capabilities and sensitivity level. The final event 

was split into two conditions: participants experienced either 

a detection failure, where the car failed to provide an 

automatic alert and brake, or a brake system failure, where 

the car provided an alert, but did not apply automatic 

braking. This design allowed for a pairwise comparison of 

perfect performance with misses, and then perfect 

performance with false alarms. 

 

Misses 

with 

Detection 

Failure 

Perfect 

with 

Detection 

Failure 

Perfect 

with  

Brake 

Failure  

False 

Alarms 

with 

Brake 

Failure 

Correct 

Detections 
3 6 6 6 

 

Misses 
 

3 0 0 0 

False 

Alarms 
0 0 0 3 

Correct 

Rejections 
3 3 3 0 

Table 3. The number of simulation events, and system 

performance in the training course by condition (as columns)   

Course and Procedure 

Participants were presented with a course that took 

approximately 45 minutes to complete. The course contained 

segments where participants had to drive manually, as well 

as segments where the vehicle’s automated driving system 

took control (see Figure 2). 

So that they could familiarize themselves with the simulated 

driving environment and how to operate the vehicle, 

participants first drove for approximately 4 minutes in a 

course section that contained an assortment of road types, as 

well as audio instructions to enable and disable automated 

driving. 

 

Figure 2. Diagram of the simulated driving course 

At the end of this initial course section, participants were 

asked to enable automated driving as they entered a training 

section that consisted of approximately 30 minutes of 

driving. The training section consisted of nine pedestrian 

incursion events. We asked participants to allow for 

automation to perform the majority of the driving but told 

them that they could still take control of the car at any time 

if they felt in danger. Participants could disengage 

automation during the drive by either stepping on the brakes 

or turning the steering wheel at least 15 degrees. In addition 

to driving autonomously, the simulated vehicle included an 

automated forward collision warning system and automated 

emergency braking. The system provided a verbal alert 

“Warning: Obstacle Detected” and initiated an automated 

braking action when detecting a hazard. 

During the training section, pedestrians crossed the street 

directly in the vehicle’s path six times: from the right to left-

hand side of the road four times, and from the left to right-

hand side two times. Pedestrians also ran along the sidewalk, 

not impeding the vehicle’s path, three times: on the right-

hand side of the road two times, and on the left-hand side 

once (see Table 3).  

 

Figure 3. System exhibiting perfect performance with either 

detection failure or brake failure in the final event 

When the system exhibited perfect performance, it always 

worked accurately. The car notified and braked during all six 

times a pedestrian crossed the street, and when a pedestrian 

was simply walking on the sidewalk, the system correctly did 

not take action (see Figure 3). 



 

Figure 4. System exhibiting misses with detection failure in the 

final event 

When the system exhibited misses, it failed to detect some 

pedestrians. Specifically, there were three instances where 

the car did not alert and brake during a pedestrian crossing. 

To reflect existing industry design, there were also some 

instances where the car exhibited correct performance (see 

Figure 4). 

 

Figure 5. System exhibiting false alarms with brake failure in 

the final event 

When the system exhibited false alarms, it issued an alert and 

applied the brakes—even if a pedestrian was not a threat. 

There were three instances of a pedestrian simply walking 

along the sidewalk and not crossing the vehicle’s path, but 

the system nevertheless provided an alert and braking. When 

a pedestrian did cross the road, the system also always took 

action (see Figure 5). 

 

Figure 6. Final event requires participants to disengage 

automation to navigate a pedestrian and dog crossing the 

road, as the automation system fails  

During the final event section, all participants were presented 

with a tenth pedestrian encounter. The pedestrian hazard in 

this event included a person walking with a dog across the 

street (see Figure 6). This event was used as the main metric 

to measure changes in driver performance between 

conditions. 

There were two types of failures presented to participants. 

Some participants experienced a detection failure, in which 

the car neither braked nor provided an alert. Other 

participants experienced a brake system failure, where the 

car failed to brake even though it correctly provided an 

automated alert. Together, these distinct failure types 

allowed us to analyze the four different conditions 

experienced by participants. 

RESULTS  

We focus our analysis on the final event to understand 

participant behavior and reliance on the system during a 

critical failure. Performance in avoiding a collision, vehicle 

speed, and reaction time varied based on the sensitivity level 

of the AEB system that the driver was provided. The 

following analyses compare the following condition pairs: 

Missing versus Perfect with Detection Failure, Perfect with 

Detection Failure versus Perfect with Brake Failure, and 

Perfect with Brake Failure versus False Alarms. 

We then compare results from our study’s Level 3 

autonomous vehicle with that of Fu et al.’s results for a Level 

1 autonomous vehicle, where participants manually drove 

themselves (instead of being driven by the autonomous 

system), encountered the same set of obstacles, and 

experienced an AEB system with varying sensitivity levels 

[14]. The comparison focuses on both participant 

performance and vehicle speed between the Level 1 and 

Level 3 system for the final, critical event.  

Participant Performance in Critical Event with Level 3 
System  

The number of participants who did not collide with the 

pedestrian walking a dog was highest in the Missing 

condition (10). In the other three conditions, an equal number 

of participants navigated the final event successfully (3) (see 

Figure 7).  

We used Fisher’s exact test to analyze success and failure for 

the final event under the four conditions. For the small 

fraction of users who navigated the final critical event 

successfully, this test yielded a statistically significant 

difference between the Missing condition (10/12) and 

Perfect with Detection Failure condition (3/12) (p = 0.01). 

We note that the Missing condition would also show 

significant differences if it were compared to the other 

Perfect with Brake Failure and False Alarms conditions, but 

the conditions are not directly comparable, as doing so would 

result in two changing variables. 

 



 

Figure 7. Participant performance of failure or success in 

navigating the final event   

Vehicle Speed in Critical Event with Level 3 System  

We analyzed the vehicle’s speed as it passed by or collided 

with the pedestrian walking a dog (see Figure 8). If the 

participant failed to disengage automation, the car collided 

into the pedestrian and dog at its automated driving speed of 

20 m/s. This speed value thus served as a proxy for whether 

a participant disengaged automation and slowed to avoid the 

pedestrian or not. We evaluated this metric across each of the 

four conditions. We then ran an independent-samples t-test 

across the four data sets, which yielded statistically 

significant differences between the Missing (M=3.56 m/s, 

SD=4.37 m/s) and Perfect with Detection Failure (M=16.88 

m/s, SD=3.2 m/s) conditions; t(23)=-8.529, p < 0.001. The 

results suggest that participants in the Missing condition 

successfully slowed the vehicle down to avoid the impending 

collision.  

 

Figure 8. Vehicle’s speed as vehicle encounters the pedestrian 

and dog  

Reaction Time in Critical Event with Level 3 System  

We analyzed the reaction time to understand when 

participants either engaged the vehicle’s brakes or adjusted 

the steering wheel at least 15 degrees in order to disengage 

automation before the final, critical event (see Figure 9). We 

calculated reaction time from the moment the pedestrian and 

dog started moving across the street.  

 

 

Figure 9. Participant’s reaction time to disengage automation 

in the final event  

Using pairwise t-tests, we found a significant difference in 

the reaction time for Missing (M=1.41 s, SD=0.30 s) and 

Perfect with Detection Failure (M=2.45 s, SD=0.51 s) 

conditions; t(23)=-5.4338, p < 0.001. These results suggest 

that participants in the Missing condition disengaged 

automation in a shorter period of time in the final event.  

Trust Measure in Level 3 System  

To evaluate trust between the participant and automation 

system, we examined their behavioral demonstration of 

reliance or non-reliance on the system’s behaviors using Jian 

et al.’s self-reported measures questionnaire [18], an 

empirically based scale used by researchers studying trust in 

autonomous vehicles. Before and after the simulated driving 

experience, participants completed the questionnaire to rate 

their feelings of trust and impressions of the automation 

system. A repeated-measures ANOVA did not find 

statistically significant difference between the pre- and post-

drive trust index, nor was there a significant change in trust 

scores among the four experimental conditions (see Figure 

10).  

 

Figure 10. Self-reported measurement of trust in the 

automation system   

Participant Performance Comparison of Level 1 
(Manual-Configuration) and Level 3 (Automation-
Configuration) Systems 

The metrics discussed in the previous section were 

compared, in the same pairs, to the results from data we 

obtained from Fu et al., where participants were instructed to 

manually drive through the same obstacle and road path 

using a Level 1 vehicle, where the AEB system was the only 

advanced driver assist system [14]. Given the similar 

condition groups used to categorize participants in both 

studies, we compared the following pairs in both the 

Automation and Manual studies: Missing versus Perfect with 

Detection Failure, Perfect with Detection Failure versus 



Perfect with Brake Failure, and Perfect with Brake Failure 

versus False Alarms. 

Overall, far fewer participants successfully navigated the 

final event in the Automation condition (19) compared to the 

Manual condition (35) (see Figure 11). In particular, 

performance was significantly worse in the Perfect with 

Brake Failure and False Alarm conditions, but not in the 

Perfect with Detection Failure and Missing conditions. 

To quantify the difference between the results of the current 

and previous study, we computed Fisher’s exact test statistics 

for each of the four pairs of results across the two studies, 

one pair per condition. The Perfect with Brake Failure 

condition results between the Automation configuration 

(3/12) and Manual configuration (11/12) gave a statistic of 

33.0 (p = .003), indicating a significant difference between 

the two studies. The False Alarm condition between the 

Automation configuration (3/12) and Manual configuration 

(10/12) also showed significant differences between the two 

studies, with a statistic of 15.0 (p = .012). 

 

Figure 11. Comparison of participant performance for the 

manual and automation configurations   

Vehicle Speed Comparison of Level 1 and Level 3 
Systems 

We performed a similar analysis to compare vehicle speed at 

collision time across the Automation and Manual 

configurations, for each of the four conditions. Since vehicle 

speeds are continuous variables rather than discrete (binary) 

events, we used the two-sample Kolmogorov-Smirnov test 

[8], which answers whether two continuous data sets are 

likely to have been drawn from the same distribution.  

For the Perfect with Detection Failure condition, a statistic 

of 0.67 was obtained (p = .008), which indicates a significant 

difference for the vehicle speeds between the Automated and 

Manual configurations. We can conclude that there is 

significantly different behavior in the Perfect with Detection 

Failure condition between participants driving the vehicle 

themselves and the car autonomously driving participants. 

For the Perfect with Brake Failure and False Alarm 

conditions, identical results were obtained when comparing 

the Automated and Manual configurations, with a statistic 

value of 0.75 (p = .002); both conditions displayed 

significantly different results across the two studies’ 

automation results. Overall, only the Missing condition 

demonstrated consistently insignificant results, suggesting 

that the Automated configuration results in significantly 

different behavior when the ADAS provides perfect or 

excessive false signals to the user.  

 

Figure 12. Comparison of vehicle speed during final event for 

the manual and automation configurations   

DISCUSSION AND CONCLUSIONS 

The driving performance of participants, along with their 

reaction time to disengage automation and thereby the 

vehicle’s speed, varied when they were presented with a 

Level 3 autonomous vehicle’s AEB system that signaled 

either fewer or more false alarms and misses. 

In the Missing condition, most participants successfully 

navigated the final event. They tended to disengage 

automation and engage the vehicle’s brakes early enough so 

that when the pedestrian and dog crossed the road, the 

vehicle was at a slower speed, occasionally even at 0 m/s, a 

full stop. Their reaction times also tended to be lower, which 

means they were able to disengage automation in a shorter 

time period when the vehicle encountered a threat in the final 

event. We expect that participants were more cautious when 

using a vehicle that already exhibited some errors and misses 

during the training course (see Figure 13), and therefore were 

more alert and cautious during the final event. In the video 

data, Missing condition participants were observed to be 

frequently leaning in and checking their surroundings while 

on the road. 

Figure 13. Front and aerial view of less sensitive system that 

does not detect and brake for pedestrians in opposing traffic 

lane  

In the two Perfect conditions and also False Alarms 

condition, most participants were unable to navigate the final 

event. Many collisions occurred at relatively high speeds, 

approaching 20 m/s, which meant that the driver did not 

bother to disengage automation and the vehicle maintained 

its existing automated speed when colliding into the final 

event’s pedestrian and dog. This behavior was further 



confirmed by the reaction time metric, where the driver 

reacted several seconds after the pedestrian and dog started 

crossing the street, sometimes disengaging automation only 

after the fatal collision occurred. We expect that this 

behavior resulted from a sense of passivity and complacency 

in the vehicle’s performance, as prior to the final, critical 

event, the automated system successfully navigated any 

obstacle that was in its path. In the False Alarms condition, 

the vehicle even slowed down, alerted and braked for objects 

that were on sidewalks, even though they were not in the 

vehicle’s path (see Figure 14). Participants in the Perfect 

conditions and False Alarms condition may have had a sense 

of over-confidence in the vehicle’s ability to accurately 

detect any and all potential threats—even if they were not 

obstacles on the direct road path—and therefore, when the 

vehicle was unable to correctly react and perform in the final 

event, participants were not able to successfully take over.  

 

Figure 14. Front and aerial view of system biased towards 

false alarms brakes for all potential threats, including 

pedestrians on sidewalk who are not in the direct road path  

When comparing the Manual and Automated configurations, 

we noticed shifts in participant behavior as the vehicle’s 

level of automation increased. Overall, far fewer participants 

successfully navigated the final event in the Automated 

configuration compared to the Manual configuration. In the 

exact same condition groups of varying levels of AEB 

sensitivity, we noticed better performance and higher 

vigilance when participants were in the Manual 

configuration. The most significant difference occurred in 

the Perfect with Brake Failure and False Alarms conditions, 

where the Automated configuration resulted in significantly 

worse performance. We expect that this difference occurred 

because there is naturally a higher level of vigilance when 

one is driving a vehicle compared to when one is simply 

supervising. Drivers who merely supervise the vehicle may 

come to view themselves more as passengers, without 

needing to take any action, especially after they have formed 

a mental model that the vehicle can handle both real and 

potential threats by itself. And finally, whether the 

participant received the Manual or Automated configuration, 

participants in the Missing condition resulted in better driver 

performance. We expect that this behavior occurred because 

when a system is biased towards a failure mode that may 

involve fatal accidents—in other words, misses—drivers 

become extremely wary and cautious of the system, even 

more so than when the car is biased towards false alarms. 

The implication is that a system biased towards misses 

increases driver vigilance and improves driver performance 

in cases of detection failure or system inaction.  

Our findings suggest a challenge for automated vehicle 

system designers: that an AEB system biased toward issuing 

fewer alerts, even when the threats are real (an undesirable 

design specification), results in increased driver vigilance 

and performance (a desirable outcome). We expect that as 

autonomous vehicle sensing and control systems become 

capable of handling all situations without driver supervision 

required, as in Level 5 systems, this challenge will recede, 

because vehicle occupants will not need to maintain high 

degrees of situation awareness. However, in the interim, as 

the level of vehicle autonomy increases, yet the need for 

drivers to potentially intervene remains, the effects of system 

bias on driver vigilance and performance may become more 

pronounced. 

In conclusion, we had hypothesized that a system exhibiting 

misses can result in improved driver response during critical 

events, and that a system with perfect performance or false 

alarms would lead to complacency that negatively influenced 

driver response. Our study supports the first hypothesis, as 

drivers reacted more to a system biased to under-report 

hazards. We also hypothesized that higher levels of 

autonomy in vehicles result in a lower level of driver 

vigilance and awareness. When reversing the roles of the 

driver and computer and tasking the driver to supervise an 

imperfect higher-level automated system, we noticed that 

driver performance worsened during a final, critical event. 

DESIGN IMPLICATIONS 

The design of systems with misses and false alarms has been 

applied in other domains, e.g., inventory control (rejecting 

high-quality goods and accepting low-quality goods) [24], 

computer security (classifying imposters as authorized users 

and authorized users as imposters) [41], airport security 

screening (identifying an innocent traveler as a terrorist) 

[13], and biometrics and medical testing [16]. As with 

autonomous vehicles, these systems have inherent 

algorithmic biases, and the consequences of biasing towards 

more misses or more false alarms may have more severe—

sometimes dire—consequences, depending on the 

application; for example, indicating a woman is not pregnant 

when she is, or acquitting a guilty person of a crime.  

Our findings provide insights to car manufacturers regarding 

the design of automotive system bias. The default path that 

companies may be inclined to take is conservative; however, 

the interpretation of ‘conservative’ may differ between 

manufacturers. One manufacturer may provide an alert 

whenever a situation might warrant it (as the threat could be 

real), while another may not provide one alert after another 

unless the system is absolutely certain the threat is real. Both 

are cautious frames, yet both result in different 

implementations. The resulting inconsistency across 

vehicles can cause confusion among drivers, as they move 

from one manufacturer’s vehicles to another’s, and our 

findings provide a starting point to address such design 

challenges.  



Still, we hesitate to suggest that our findings be immediately 

engineered into active systems. Rather, we encourage 

additional design research to assess if there are other means 

to train a driver to expect misses and under-notification in 

autonomous vehicles. This may occur through new driving 

tests for operating autonomous vehicles, or through training 

of the driver that system flaws will occur.  

LIMITATIONS AND FUTURE WORK  

One shortcoming of simulator studies is that driver trust in 

autonomous systems is likely different compared to that in 

autonomous vehicles on the road with real traffic. However, 

given the dangers of conducting studies with critical safety 

failure events on the open road, simulator-based studies are 

an ethical compromise. We hope to modify the study design 

in the future to allow experiments on the physical road.  

Additionally, our study is based on standard signal detection 

theory, which has received the greatest attention in detection 

theory literature; however, there are related theories worth 

noting. In particular, fuzzy SDT has been applied to studying 

both human and machine performance, and in particular, it 

has been used to evaluate models for human drivers’ ability 

to perceive hazards [35, 52]. Fuzzy SDT relaxes the black-

and-white categorizations of signal versus noise and 

detection versus miss and can more robustly model partial 

failures, such as when a driver brakes enough to avoid a 

fatality but not enough to avoid a collision. While we focus 

on standard SDT, we hope to expand the study design in the 

future to include fuzzy SDT concepts. 

While we did not observe changes in participants’ trust in 

automation using pre- and post-study questionnaires, we 

expect that additional probes of trust during the drive could 

reveal significant differences in future studies. Additionally, 

while we focused on driver performance as a main metric and 

observed significant differences, we also encourage research 

on the psychological and economic outcomes of designing 

systems with more misses, as has been done with research on 

designing biases in cancer detection screening [36]. 

In sum, while there has been a great deal of research in the 

area of automation control, further study is required to offer 

guidance to drivers and OEMs about how to think about the 

implications of system bias, particularly as vehicles on the 

road with higher levels of automation—such as the car 

depicted in the 1950s illustration of future highway travel—

become more prevalent. 
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