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Abstract

We use disk matrices to define knotting fingerprints that provide fine-
grained insights into the local knotting structure of ideal knots. These
knots have been found to have spatial properties that highly correlate
with those of interesting macromolecules. From this fine structure and an
analysis of the associated planar graph, one can define a measure of knot
complexity using the number of independent unknotting pathways from
the global knot type as the knot is trimmed progressively to a short arc
unknot. A specialization of the Cheeger constant provides a measure of
constraint on these independent unknotting pathways. Furthermore, the
structure of the knotting fingerprint supports a comparison of the tight
knot pathways to the unconstrained unknotting pathways of comparable
length.

1 Introduction1

Within the natural sciences, knotted, linked, and entangled macromolecules2

are encountered in a wide range of contexts and scales. Their presence has3

important implications for physical and biological properties. Understanding4

how their presence causes these observed properties is a matter of contemporary5

interest. In this research, we focus on the local structure of a robust family of6

knots, the “ideal” or “tight” knots [43], whose spatial properties have been found7

to correlate with those of interesting macromolecules [12, 23, 24, 29, 34, 41, 42,8

49] and subatomic glueballs [5, 6, 7, 8].9
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One can think of these configurations as starting from a single arc that then10

grows along the configuration to eventually be the whole configuration. During11

this growth, the open chain subarcs evolve from an unknotted segment through12

intermediate knotted states and ultimately to the base knot type. The interme-13

diate knotted states depend on where one starts growing the configuration, and14

the voyage through intermediate knots from different starting positions reveals15

information about the spatial structure of the configuration. In this article,16

we analyze the evolution of the knotting in these subarcs through this growth17

and introduce quantities that measure the degree of complexity in obtaining the18

configurations. While we analyze ideal knots here, the techniques could be used19

to analyze any closed chain.20

Alternately, one can think of the base configuration as being shrunk, i.e. be-21

gin with the entire configuration and then continuously digest the configuration22

from a given starting point. In this sense, our work also is an analysis of the23

complexity seen during decay.24

We will focus on identifying the constituent local knotted arcs within a25

knotted ring, as expressed in the knotting fingerprint, and analyzing their inter-26

relationships [37, 44]. To identify the fine-grain knotting structure of a complex27

knotted ring, we employ a slight alteration of the MDS method [30, 33] that28

defines the knot type of an open arc. In Section 3.3 we describe more specifi-29

cally how to display this information in the form of a color-coded disk, a disk30

matrix, in which the color of each cell corresponds to the identified knot type31

of a corresponding subchain [36], see Figure 1. Briefly, the radial distance from32

the center expresses the length of the subchain, with short subchains near the33

center and the entire chain (minus one edge) giving the border of the disk.34

The angular coordinate expresses the middle point of the subchain. In Section35

3.5 this knotting fingerprint is then translated into the planar graph associated36

to the fingerprint. The vertices in this graph correspond to the connected re-37

gions associated to the knot type. Among these vertices, the central unknot38

(as short segments are never knotted) and the peripheral region (corresponding39

to the global knot type) have special roles. We assess the complexity of the40

knot by measuring the constriction in minimal channels between the central un-41

knotted region and the peripheral global region in the graph using the Cheeger42

constant [14]. We also analyze a measure of structural complexity using the43

number of edge- and vertex-independent paths in the graph that begin at the44

central unknot vertex and end at the global knot vertex. These measures pro-45

vide information reflecting the spatial properties of the knot. For example, the46

number of independent paths is precisely the number of independent unknot-47

ting/knotting pathways associated to the given spatial conformation. Further48

analysis suggests ways, three-dimensional in character, by which one can mea-49

sure the spatial complexity of the knot. These appear to capture information50

that is independent of classical knot invariants [13].51
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Figure 1: The knotting fingerprint of 10165.

2 Ideal Knots52

Ideal knots [4, 10, 21, 23, 26, 28, 43] are inspired by the result of tying a knot in53

some physical material (e.g. a piece of rope of some uniform thickness) and then54

seeking a conformation of the knot in which the length is the smallest possible.55

Thus, in the context of this study, we consider circular ropes of uniform thickness56

and minimal length among all conformations representing the same knot type.57

Such conformations are mathematically modeled by smooth curves, usually C1,1
58

or C2, for which one can define the radius of an embedded normal tube and the59

length of the curve. The ropelength of a knot is defined to be the minimum60

of ratios of the arclength and this thickness radius over all conformations of61

a given knot type. A curve realizing this minimum is then a tight knot or,62

equivalently, an ideal knot. Rigorous results for ideal knot conformations are63

very limited. For example, we only have very good estimates of both the lower64

and upper bounds for the minimal ropelength of the trefoil knot: it lies between65

31.32 and 32.7429345 [17, 35]. As a consequence, we are limited to approximate66

conformations described by polygons resulting from computer simulations. In67

this research, we apply our analysis to the ideal prime and composite knot68

conformations resulting from the knot-tightening code ridgerunner, developed69

by Ashton, Cantarella, Piatek, and Rawdon [2, 11], as they appear to provide70

good upper bounds.71
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Figure 2: +1 and −1 algebraic crossing numbers at a crossing.

3 Knotting Fingerprints and the Associated Graphs72

A closed chain in Euclidean 3-space is knotted if there is no ambient deformation73

of space taking the chain to the standard planar circle. The search for compu-74

tationally efficient and effective methods to determine the specific structure of75

knotting for polygons is a continuing mathematical challenge. More impor-76

tantly, the search for an appropriate formulation of knotting of open chains is77

even more challenging. From the classical topological perspective, knotting of78

open polygons is an artifact of a fixed spatial conformation because, if edge79

lengths and directions in the polygon are allowed to vary, each open polygon is80

ambient isotopic to a standard interval on the “x”-axis in 3-space (this is called81

the “light-bulb” theorem [38]). However, open polygons can be geometrically82

knotted if the edge lengths are fixed. This is demonstrated by the examples of83

Canteralla-Johnston and others [1, 9, 48].84

3.1 Knot Identification85

Here we study open, roughly equilateral polygons and require a robust method86

that will allow us to identify those that are “topologically” knotted. To do so,87

we compute the HOMFLY knot polynomial [20, 27] using the Ewing-Millett88

program [18]. This allows us to determine the chiral knot type, i.e. the spatial89

orientation of the knot in 3-space, with a high degree of reliability. A knot is said90

to be chiral if it is not equivalent to its mirror reflection. For many chiral knots,91

the writhe of a minimal crossing projection (defined as the algebraic sum of the92

crossing numbers, see Figure 2) is not zero, thereby defining a positive/negative93

instance dependent upon whether the writhe is positive/negative. If the specific94

knot, K, has positive writhe, it may be denoted by K, or by +K, depending95

upon the setting. If the negative instance is selected, it will always be denoted96

by −K. For alternating knots, the writhe of minimal crossing projections is an97

invariant [47] but is not for non-alternating knots. In addition, achiral knots,98

i.e. those equivalent to their mirror reflections, will have zero writhe in minimal99

crossing projections; however, note that this is not a sufficient condition for100

achirality. For knots with zero writhe minimum crossing projections, we use the101

standard presentations to identify which conformation will be + and −.102
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3.2 A Variant of the MDS Method103

In order to identify the knotting present in open chains, especially those used as104

models of protein structures, and being concerned with the uncertain features of105

some popular strategies, Millett, Dobay, and Stasiak [30] developed a stochastic106

method to identify and quantitatively measure the extent of knotting present in107

an open polygonal arc. This method has been employed in a study of knotting108

in random walks and tested against the previously identified knotting present109

in protein structures [33]. More recently, it has been employed to create the110

knotting fingerprint used in an extensive study of the presence and nature of111

knots and slipknots occurring in protein structures [22, 44].112

To identify the knotting within open arcs, we use a slight variation of the113

MDS Method. Given an open polygonal arc, we close the configuration at infinity114

by extending rays in a common direction from each of the endpoints of the arc.115

Well beyond the convex hull of the polygonal arc, we connect the two rays to116

form a closed chain. We perform this new closure procedure 100 times per open117

arc using a roughly uniform distribution of directions. This choice is based upon118

extensive experimentation, during which we found that (1) a ‘roughly uniform119

distribution of directions’ is superior to a ‘random distribution of directions’120

(consistent with the experience of researchers in numerical analysis [40]) and (2)121

a choice of 100 points provides data of sufficient quality for our purposes when122

compared to, for example, as many as 6400 points, based on our experience123

in earlier studies [30, 33, 36, 44]. The distribution of knot types on the two124

dimensional sphere of directions determines the knotting spectrum and provides125

a stochastic description of the knotting of the arc, see Figure 4 where we show126

the case of the DehI protein, PDB ID 3bjx [3, 44]. For all practical purposes, in a127

given open chain, this spectrum identifies a dominant knot type at the plurality128

level, see Figure 5. Here 10, 000 random walks of length 300 were generated and129

the occurrence of the most frequent knot type determined. In over 99% of the130

10, 000 cases, one knot type appeared in more than 50% of the closures. Thus,131

when a single knot type occurs more than any other knot type in the closures,132

we identify this as the “knot type” of the segment and record the proportion of133

this knot type. The knot types of such knotted segments are called subknots of134

the chain. If a subknotted chain is contained in a larger unknotted segment, it135

is called an ephemeral knot and the unknotted chain is called a slipknot [31]. As136

a consequence, this approach provides a powerful method with which to analyze137

the knotting of open chains.138

3.3 The Knotting Fingerprint139

For open chains, specifically polygonal models of protein structures, triangular140

and square matrix arrays of colored cells have been employed to visually repre-141

sent the knot types of the entire collection of subchains [25, 44, 46]. For a given142

knotted or unknotted polygonal ring of n edges, this triangular matrix fails to143

capture the periodic character of a closed ring. Therefore, one constructs a144

new knotting fingerprint given by a disk matrix structure consisting of n − 1145
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Figure 3: An example of one closure at infinity (two blue edges) for a polygonal
configuration. For each open chain, 100 of these closures are created using
a roughly uniform set of directions. The distribution of knot types of these
closures is an approximation of the probability distribution over all closures and
provides a stochastic description of the knotting of the open chain.

Figure 4: An Eckert IV area-preserving presentation of the spherical distribution
of knot types in the DehI protein, PDB ID 3bjx [3, 44]. Each of the 64, 000 data
points is coded to indicate the knot type of the closure from the given spherical
closing direction. The Stevedore’s knot, 61, is blue and represents 62% of the
area, the unknot is red at 28%, the figure-8 knot, 41, is dark green at 6.0%, the
trefoil, 31, is light green at 2.5%, 52 is brown at 0.8%, and 51 is blue-green at
0.1%, accounting for a total of 99.78% of data points. Five other knot types
appear even less frequently: 31#41, 72, 82, 83, and 86.
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Figure 5: The largest knot type proportion for 10, 000 samples of 300-step
random walks. Over 99% have a knot type appearing at 50% or more. The
data is ordered by knot type, indicated by distinct colors, and by increasing
proportion.

concentric rings, each of which is divided into n congruent colored cells [36].146

Each of the colored cells is determined by first calculating the knotting spec-147

trum of the associated subsegment of the chain and identifying the dominant148

knot type. This knot type has an assigned color giving the color of the cell, with149

the intensity of the color determined by the proportion of closures having the150

given knot type. The color of the unknot is always indicated by the color gray.151

The choice of color for other knot types is determined independently for each152

specific closed ring because the spectrum of knots appearing in it can change153

significantly with the choice of ring. These colored cells are arranged as follows:154

First, a base point and orientation of the chain is selected. For a given segment155

length, starting at one and increasing to n − 1, the colored segments are ar-156

ranged at a constant radius corresponding to the proportion of the total length157

of the chain in a counter-clockwise fashion, with the angle from the initial cell158

indicating the middle point of the segment in the direction of the orientation.159

In Figure 6, we show the knotting fingerprint of an ideal 92 knot. The color160

bar to the right of the figure indicates the color code and intensity range for161

this knotting fingerprint. As very short segments of three edges or shorter must162

be unknotted, the central region of the knotting fingerprint is always gray. As163

the entire chain is always the global knot type, the cells in the outer ring of164

the knotting fingerprint are the color attributed to the knot type. As a result,165

each of the colored regions provides information about the knotting structure of166

the circular chain. For example, reading the color coding of rings of increasing167

radius, i.e. proportion of the total circular chain, one can determine the length168
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Figure 6: The knotting fingerprint of an ideal 92 and its associated knotting
graph. The two different vertex colors identify the separation defining the
Cheeger constant, here equal to 5

4 . The five thickened blue edges are those
connecting the separated regions (each of size 4) that define the Cheeger con-
stant.

of the shortest subsegment supporting the global knot type.169

3.4 Analysis of the Knotting Fingerprint170

The knotting fingerprints are limited by the resolution of the knot configurations171

they represent, i.e. corresponding to the number of segments in the chain. Hence172

there are certain scenarios where the apparent knotting fingerprints do not agree173

with what one might expect. In some cases, this is a matter of resolution,174

while in others, it may give evidence of an unanticipated evolution of the local175

structure. For example, we frequently observe tiny, e.g. single-cell, isolated176

regions of a certain type near but not contiguous to much larger regions of the177

same type. When this phenomenon occurs near the boundary of two regions178

in the knotting fingerprint, it suggests that the tiny regions are inadvertent179

artifacts, due to the limited resolution, and should not be considered as singular180

regions distinct from their larger neighbors of the same type. In such situations181

it may be appropriate to “smooth” the data so the boundaries between distinct182

regions are more regular.183

In other situations, we observe features in the knotting fingerprint that ap-184

pear to be inconsistent with one’s interpretation of the consequences of knot185

theory. For example, there are several cases when the global knot has an un-186

knotting number greater than one, but the unknot appears to connect to the187

global knot by the addition of a single segment. One might expect that the188

difference between unknotting numbers of adjacent regions must be no greater189

than one [16, 19], so these fingerprints may appear to be incorrect. For a sin-190

gle closure direction from the sphere of directions, the addition of a sufficiently191

small edge would account for no more than a single strand passage, but in our192
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case, there are two features that weaken this simplistic analysis. First, for a193

single closure direction, a single edge addition may cause more than one strand194

passage. This situation might be eliminated through higher resolution, i.e. by195

subdividing the edge segments of the chain. Second, our analysis concerns a196

stochastic process giving spherical regions representing the distinct knot types197

arising from the closures. The process of adding an edge causes an evolution of198

these regions. Thus our choice of the plurality knot type can lead to a jump of199

two or more in the strand passage difference between the competing knot types200

(see Figure 4). We will see that this represents a real artifact of the ideal knot201

presentation, not merely a question of its resolution. Therefore, although with202

greater resolution we would expect to see a more accurate knotting fingerprint,203

the strand passage difference between two adjacent regions may or may not re-204

flect the structure of the ideal knot. For these analyses, we carefully account for205

this potential error by deleting the edge between the unknot and the global knot206

in the corresponding knotting graph when the ideal knot structure suggests that207

it is a resolution artifact.208

3.5 The Knotting Graph209

The knotting fingerprint (possibly smoothed) defines the planar knotting graph210

by associating a vertex to each of the connected knotting regions (the connected211

components of the knotting fingerprint) and associating edges between pairs of212

vertices whose knotting regions are contiguous, directed with increasing segment213

length. As described in the previous section, one may encounter spurious cells in214

the knotting fingerprint whose presence requires a “smoothing” of the regions.215

As a consequence, we employ the resulting smoothed fingerprints in constructing216

the knotting graph. In Figure 6, we show the knotting graph associated to the217

92 fingerprint. In Figure 8, for example, note the presence of an edge from the218

gray unknot component, 01, to the green −31 component, and another edge219

going in the opposite direction due to the presence of a ray from the center to220

the outer edge traversing from gray to green and back to gray. Another instance221

of this structure occurs with the presence of slipknots, see Figure 10 where there222

are three such instances.223

The presence of the edge connecting the vertices associated to two contiguous224

regions reflects the passage of one of the parallel supplementary edges added to225

the chain, see Figure 3, through one or more edges of the subsegment of the226

chain. If the resolution of the ideal knot is fine enough, one might expect that a227

single edge passage would occur and the unknotting numbers of the associated228

closed conformations would change, if at all, by at most one. The phenomena229

that the addition of a single small segment may result in a change of unknotting230

number of two or more is quite possible and actually occurs in practice. As231

noted earlier, this may be a resolution issue, i.e. one that could be resolved232

by a refinement of the chain structure or by an increase in the density of the233

uniform closure points. Thus one needs to look very closely at the possibility of234

a complex structural evolution as is illustrated by the case of composite knots235

(see Section 4.4 and Figure 11).236
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The knotting graph of 92, shown in Figure 6, has two distinguished vertices.237

The first corresponds to the component of small unknotted segments, labeled238

0.1. The second corresponds to the knot type of the entire ring, labeled 9.2239

in Figure 6, indicating that it is the 92 knot in the classical knot enumeration240

realized with the positive chirality. In addition, there are two components each241

of 31, 52, and of 72, as shown in Figure 6, each giving a vertex in the knotting242

graph. There are edges between the 31 vertices and the 01 and 52 vertices, as243

the red 31 components share common frontiers with the gray 01 and green 52244

components, etc.245

4 Analysis of the Knotting Graph246

We employ the knotting graph associated with the knotting fingerprint of a given247

knot as the principal vehicle supporting our analysis of the spatial character of248

the knot. The unknot vertex and the global knot vertex anchor our analysis as249

we study the extent to which there are constraints inherent in the evolution be-250

tween the unknot and the global knot, reflected in the structure of the knotting251

graph. Is there a small number of knotting states through which this evolu-252

tion must pass? One powerful measure of such a constraint or “bottleneck” is253

provided by our specialization of the Cheeger constant.254

4.1 The Cheeger Constant255

In graph theory, the Cheeger constant [15] is a measure of whether a graph con-256

tains a “constriction” or “bottleneck.” It is inspired by Cheeger’s isoperimetric257

constant h(M) for a compact Riemannian manifold, M , in terms of the area of a258

codimension one hypersurface, S, dividing the manifold into two disjoint pieces259

of equal volume [14]. For graphs, our modification of the Cheeger constant is260

defined as follows: Let G denote a connected graph, V (G) be the vertices of G,261

and E(G) be the edges of G. For a subset of vertices, S, containing either the262

initial unknot vertex or the global knot vertex (but not both), let ∂S denote263

the set of edges that have exactly one vertex in S, and let |∂S| be the number264

of such edges. We define the Cheeger constant by265

h(G) = minimum

{
|∂S|
|S|

: 0 < |S| ≤ |V (G)|
2

}
.

This formulation of a Cheeger constant is designed to detect the presence266

of a constriction in the separation of the knotting graph that lies between the267

trivial knot and the global knot and, as such, represents a constriction in the268

growth of the knotting structure. In Figure 6, we show the set of vertices,269

S = {0.1, 3.1, 5.2, 7.2}, connected by five thick blue edges, ∂S, to the remaining270

vertices that include the global knot vertex, 92. This configuration has Cheeger271

constant equal to 5
4 , which, since it is greater than one, indicates that the 92272

knotting fingerprint is not a constricted knotting formation.273
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4.2 Independent Knotting Pathways274

Another measure of constriction is inspired by the Max-Flow-Min-Cut Theorem275

and the related theory of Menger [50]. We determine the maximum number of276

edge independent directed paths, i.e. no edge appears in more than one path,277

from the unknot vertex to the global knot vertex. In Figure 6, we observe that278

the maximum number of edge independent paths from the unknot vertex to the279

global knot vertex is three; in this case, the constraint is given by the degree280

of the global knot vertex. The maximal number of edge independent paths is281

bounded above by the degree of the unknot vertex, the degree of the global knot282

vertex, and the number of edges in the minimum edge cut set separating the283

unknot vertex from the global knot vertex [50]. The number of edges in the284

minimum edge cut set is related to the Cheeger constant as well as the Max-285

Flow-Min-Cut analysis. Specifically, the numerator of the unreduced Cheeger286

constant fraction is the number of edges in a cut edge set separating the trivial287

knot vertex from the global knot vertex and, therefore, is an upper bound for this288

number. We propose, therefore, to call the maximum number of undirected edge289

independent paths the edge robustness index, ER(K), of the knotting graph. We290

observe, as is shown in Figure 6, that the specific set of paths is not unique.291

While the Cheeger constant numerator and ER(K) are equal for the simplest292

knots, the case of the twist knot, 72, illustrates both the relationship and the293

possible difference between these values for a given knot, see Figure 7. In this294

case the number of distinct knotting pathways is reduced by one due to the fact295

that vertex 72 has degree 3.296

Alternatively, one could additionally require that the connecting paths are297

both edge and vertex independent. In this case one defines the edge vertex298

robustness index, EV R(K), of the knotting graphs. We note that there are299

cases in which these two indices of a knotting graph are different. The smallest300

crossing number example is the knot 87, whose knotting fingerprint and graph301

are shown in Figure 8. An analysis of the associated knotting graph shows302

that there are six edge independent paths while there are only five edge-vertex303

independent paths.304

4.3 Second Order Pathway Independence305

In our analysis of knotting graphs, we discovered a collection of knots for which306

EV R(K) is equal to one due to the existence of a bridge edge in the knotting307

graph, i.e. an edge whose removal disconnects the unknot vertex from the global308

knot vertex [50]. The simplest examples of this structure are the (2, 2n + 1)-309

torus knots, for example see Figure 9. In this case, all edges are bridges. In310

other cases, for example 819 or 935, this first measure of robustness does not311

fully capture the complexity of the knotting fingerprint. We propose, as a con-312

sequence, to create a second order measurement associated to the two connected313

components that result from the removal of the bridge edge. One of the bridge’s314

vertices can be identified as a terminal vertex when it lies in the component con-315

taining the unknot vertex, while the other can be identified as an initial vertex of316
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Figure 7: The 72 knotting fingerprint, on the left, and associated knotting
graph illustrate the difference between the numerator of the Cheeger constant,
4, shown in the central graph and ER(K) = 3, shown in the right graph, due
to the requirement that distinct paths employ disjoint edge sets. On the right,
each bold path that contributes to ER(K) is given its own color.
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Figure 8: The 87 knotting fingerprint and associated knotting graphs illustrate
the difference between ER(K) = 6 and EV R(K) = 5. In particular, the vertex
independence restriction means that only one path may pass through the 31
node on the right of the graph when computing EV R(K), while that vertex is
used for two paths when computing ER(K). Each bold path that contributes
to ER(K) or EV R(K) is given its own color.
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Figure 9: The 71 torus knot has a linear knotting graph. The two different
vertex colors identify the separation defining the Cheeger constant, where the
bold edge connects the separated regions.
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Figure 10: The 940 knotting fingerprint and the associated knotting graph. The
two different vertex colors identify the separation defining the Cheeger constant,
where the bold edges are those connecting the separated regions.

the other component. We then determine the edge vertex robustness index for317

the two resulting subgraphs, thereby giving a pair of indices, (p, q), that define318

the second level of pathway independence. In some cases, the bridge is adjacent319

to the unknot vertex or the global knot vertex. In those cases, we would assign320

the index zero to the component consisting of the single vertex. We find the321

following second order indices for the prime knots, whose knotting graphs are322

non-linear but contain a bridge, through 10 crossings: 819 : (0, 4) , 935 : (12, 0),323

10120 : (0, 12), 10123 : (0, 10), 10124 : (0, 4), 10152 : (0, 6), and 10154 : (0, 9).324

4.4 Prime Knots, Composite Knots, and Slipknots in Knot-325

ting Fingerprints326

We have seen that the knotting fingerprints of ideal prime knots can be quite327

complex (see Figure 1) in that they contain a complex spectrum of subknot328
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Figure 11: The knotting fingerprints of the connected sums 31#31 and 31#−31.

types. For example, one may find subknots of a prime knot that are ephemeral329

knots contained within slipknots, i.e. they are contained with larger segments330

that are unknotted (see Figure 10 in which there are three ephemeral trefoils331

which become unknotted as the number of segments is increased). In the associ-332

ated knotting graph, see Figure 10, the associated ephemeral knot type regions333

correspond to vertices which, with the unknot vertex, support a loop reflecting334

the slipknot structure.335

Ideal composite knots, the connected sums of two or more prime knots, can336

exhibit another type of complex structure (see Figure 11). Although 31#31337

contains two distinct 31 knot components, its knotting graph is linear, reflected338

by the single 31 component in the knotting fingerprint. In contrast, the knotting339

fingerprint for 31#−31 exhibits two distinct components, one for each of the340

summands, separated by an unknot region. In this knotting graph, see Figure341

12, the unknot component is contiguous to the connected sum component, a knot342

of unknotting number two. Thus, the fine structure of the knotting evolution in343

this area must be much more complex, perhaps along the lines discussed earlier,344

in which there is an evolving proportion that includes the unknot and the two345

distinct summands. In the case where the two summands are the same type,346

their knot type is cumulative, thereby providing the ring separation observed in347

the knotting fingerprint and a cut vertex in the knotting graph.348

5 Knot Complexity349

In the following sections and associated tables, we present the results of the350

calculations of the measures of knot complexity.351

5.1 Cheeger Constant Complexity352

We note that the only observed n-vertex linear knotting graphs are those asso-353

ciated with the family of ideal (2, 2n + 1)-torus knots. When this occurs, the354

Cheeger constant is 1
n , the smallest values observed for odd minimal n-crossing355

number prime knots. In our data, this is the case for 31, 51, and 71. For 91,356
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Figure 12: The knotting graphs of the connected sums: 31#31 and 31#−31.
The two different vertex colors identify the separation defining the Cheeger
constant, where the bold edges are those connecting the separated regions.

we see that this is no longer the case, although one can imagine that the rela-357

tionship might hold with a higher quality ideal 91 and/or finer resolution (see358

Figure 13). On the other hand, one knows that knot length minimization can359

significantly disrupt the symmetry or regularity shown in classical knot presen-360

tations [11]. Although one might expect to see complete rings of each knot type361

in the 91 knotting fingerprint, as in the case of 71 (see Figure 9), here the 31362

and 51 rings are incomplete, reflecting the possible disruption of the symmetry363

in the more complex ideal (2, 2n + 1)-torus knots.364

This phenomenon is quite different from the one observed in the case of the365

connected sums of trefoil knots. There are two chirally distinct cases depending366

upon the the writhe, i.e. the 31#31 (granny knot) and 31#−31 (square knot).367

In Figure 12, one sees that 31#31 has a linear graph, as its knotting fingerprint368

consists of concentric rings similar to the torus knot case. The graph of 31#−31369

is more complex because the unknot region and the global knot region are con-370

tiguous. As mentioned earlier, this contiguity is associated with the interplay371

between the two types of trefoils that prevents their knotting regions from con-372

tiguity, thereby forcing the surprising connection between the unknot and the373

connected sum, an unknotting number two knot. An even more complex exam-374

ple of this phenomenon is exhibited by the knotting fingerprint of the connected375

sum 31#52 and its associated knotting graph (see Figure 14).376

As measured by the Cheeger constant, the most complex knotting finger-377

prints for knots through nine crossings belong to 810 and 820, whose knotting378

graphs are shown in Figure 15.379

5.2 Independent Path Complexity380

Since the numerator of the Cheeger constant is the number of edges in an edge-381

cut set separating the global knot from the unknot, this numerator gives an382

upper bound on the number of edge independent paths connecting the unknot383
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Figure 13: The ideal 91 knotting fingerprint and associated knotting graph. The
two different vertex colors identify the separation defining the Cheeger constant,
where the bold edge connects the separated regions.
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Figure 14: The ideal 31#52 knotting fingerprint and associated knotting graph.
The two different vertex colors identify the separation defining the Cheeger
constant, where the bold edges are those connecting the separated regions.
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region to the global knot region. From the tables, one sees that EV R is often384

smaller than this numerator. Such is the case, for example, for the knot 72 in385

Table 1. If one employs EV R(K) as a measure of complexity instead of the386

Cheeger constant, one finds that the (2, 2n + 1)-torus knots are identified as387

the simplest structures, along with 819 and 935. The most complex, having 11388

independent pathways, are 816, 929, and 932. The latter knots suggest that the389

independent pathway measure may capture a distinctly new dimension of knot390

complexity.391

While there is only one minimal path taking the trefoil knot 31 to the un-392

knot 01, the story is more complex for other (2, 2n + 1)-torus knots. For 51,393

an unknotting number two knot, if each edge implies a change in unknotting394

number of at most one, the shortest paths must have length two. However,395

these paths are no longer unique, as one may add any single strand passage396

resulting in an unknotting number one knot, creating another shortest path.397

Employing TopoIce-X within the KnotPlot software [39], we find that, in ad-398

dition to 51 → 31 → 01, one must also consider 51 → 52 → 01, 51 → 87 → 01,399

and 51 → 926 → 01, staying within the class of knots of crossing number no400

larger than 10. In the knotting fingerprint for 51, only the first unknotting401

pathway is observed. For 71, the situation is much more complex. In addition402

to the 71 → 51 → 31 → 01 pathway, the three other previous pathways occur.403

Adding even more pathways are those knots starting with 71 → 73, 71 → 75,404

and 71 → 105 since each of these is an unknotting number two knot with their405

own collections of unknotting pathways. Again, only the first occurs for the406

ideal 71. The constraint that the knotting pathway be supported by knotted407

subsegments of the ideal knot effectively limits the knotting pathway options to408

the “standard (2, 2n+1)-torus knot” pathway. We note that the knotting graph409

complexity that may arise for the larger (2, 2n + 1)-torus knots could increase410

the number of paths; for example 91 would have two (intersecting) pathways.411

The twist knots provide another simple but interesting class to consider.412

After 31 and 41, the first of these is 52, another unknotting number one knot.413

Thus, its shortest path is 52 → 01 but, as 31 is a subknot of 52 there is a414

second, independent unknotting pathway 52 → 31 → 01 within its knotting415

fingerprint. Furthermore, there are two disjoint 31 components giving rise to416

a second, independent 52 → 31 → 01 unknotting pathway. As a consequence,417

both the Cheeger constant, 3/2, and EV R, 3, provide a finer measure of the418

real structural complexity of the 52 knot than, for example, the unknotting419

number or the genus of the knot. This same complex structure is exhibited in420

the knotting fingerprints of 61, 72, 81, and 92, other twist knots with fewer than421

10 crossings.422

What can the number of independent knotting pathways tell us about more423

complex knots, e.g. 820 shown in Figure 15? The Cheeger constant is 7/3 and424

EV R is 5. It is an unknotting number one pretzel knot whose knotting fin-425

gerprint contains ±31, ±52 and 31#−31 supporting five independent knotting426

pathways: 820 → 31 → 01, 820 → 3.1#−31 → −31 → 01, 820 → 52 → 01,427

820 → −52 → 01, and 820 → 01. Note that 820 is an unknotting number one428

knot that contains an unknotting number two subknot, 3.1#− 3.1.429
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Figure 15: The largest Cheeger constant for knots through 9 crossings is given
by 820 with h(820) = 7

3 ≈ 2.33. The knot 810 has h(810) = 11
5 = 2.2. The two

different vertex colors identify the separation defining the Cheeger constant,
where the bold edges are those connecting the separated regions.

Another interesting knot is 810 (see Figure 15), an unknotting number two430

knot whose Cheeger constant is 11/5 and EV R is 7. The seven independent431

paths provide a substantial degree of complexity, although less than the Cheeger432

separation set of 11 edges. We note that 810 also contains a composite subknot,433

two copies of 31#−31, which has unknotting number two, as does 810.434

6 Discussion and Conclusions435

In this paper we have presented the knotting fingerprint of a polygonal approx-436

imation of an ideal, or tight, knot, showing the structure of the knotting of437

subsegments of the knot. The associated structure of subknot types defines re-438

gions of the knotting fingerprint, i.e. a planar map, to which one can associate439

a planar graph with two distinguished vertices corresponding to the unknot and440

the global knot. We have proposed that the complexity of the knotting finger-441

print and the associated knotting graph provides a new measure of the intrinsic442

complexity of the knot. Interested in the ways in which knots can be unknotted443

or, inversely, constructed from unknotted segments, we have proposed strategies444

by which one can quantitatively measure this complexity. The first strategy is445

analogous to the Cheeger constant, h(K), of the graph whereby we partition the446

vertices of the graph (requiring the unknot to be a member of one subset and447

the global knot to be a member of the other subset) and take the minimum ratio448

of the number of edges connecting the two subsets and the number of vertices449

in the smaller of the two subsets over all such partitions. The second method,450

the edge robustness index ER(K), is defined to be the number of edge indepen-451

dent paths in the graph connecting the unknot vertex to the global knot vertex.452

The third method, the edge vertex robustness index EV R(K), is defined to be453
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Table 1: Analysis of Ideal Prime Knots (through 7 Crossings)
Knot h(K) ER(K) EV R(K)

31 1/1 1 1
41 1/1 1 1
51 1/1 1 1
52 3/2 3 3
61 3/2 3 3
62 5/3 5 5
63 5/3 5 5
71 1/2 1 1
72 4/3 3 3
73 5/4 4 4
74 7/4 5 5
75 7/4 5 5
76 8/4 7 7
77 6/3 6 6

Table 2: Analysis of Ideal Prime Knots (8 Crossing Knots)
Knot h(K) ER(K) EV R(K)

81 4/3 3 3
82 7/5 5 5
83 8/5 7 7
84 9/6 7 7
85 6/5 4 4
86 9/5 9 9
87 8/5 6 5
88 9/5 8 8
89 10/6 8 8
810 11/5 7 7
811 9/6 9 9
812 6/4 5 5
813 9/5 8 8
814 9/5 8 8
815 11/6 6 6
816 12/6 11 11
817 10/5 9 9
818 8/5 8 8
819 1/1 1 1
820 7/3 5 5
821 6/3 4 4
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Table 3: Analysis of Ideal Prime Knots (9 Crossing Knots)
Knot h(K) ER(K) EV R(K) Knot h(K) ER(K) EV R(K)

91 1/1 1 1 926 11/7 9 9
92 5/4 3 3 927 10/7 10 10
93 5/6 5 5 928 15/6 8 7
94 8/7 8 8 929 14/10 11 11
95 8/7 6 6 930 10/7 8 8
96 6/6 4 4 931 8/5 6 6
97 10/6 7 7 932 11/6 11 11
98 10/6 9 9 933 11/6 8 8
99 5/6 3 3 934 9/6 9 9
910 8/8 7 7 935 1/1 1 1
911 10/7 9 7 936 7/6 4 4
912 9/7 8 8 937 8/7 7 7
913 9/9 7 5 938 12/9 4 4
914 9/6 8 8 939 10/8 9 9
915 10/6 10 9 940 7/5 7 7
916 9/7 2 2 941 8/7 7 7
917 13/7 10 10 942 5/3 4 4
918 9/8 8 6 943 6/4 5 5
919 9/5 8 8 944 6/3 5 5
920 11/8 10 10 945 6/4 5 5
921 13/7 9 9 946 7/4 5 5
922 12/7 9 9 947 7/4 7 7
923 10/7 8 8 948 11/6 8 8
924 10/7 8 8 949 8/6 6 6
925 8/7 5 5
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Table 4: Analysis of Ideal Prime Knots (Selected 10 Crossing Knots)
Knot h(K) ER(K) EV R(K)
101 5/4 3 3
102 11/7 6 4
103 9/8 5 5
104 18/9 10 10
105 9/8 7 7
1010 10/8 7 7
1011 7/9 6 6
1020 8/7 6 6
1035 5/6 4 4
1036 9/7 7 6
1058 4/3 2 2
1060 10/7 8 8
1070 8/8 5 4
10120 2/1 1 1
10125 5/5 3 3
10126 6/6 5 5
10127 7/6 5 5
10128 5/4 2 2
10130 9/6 9 7
10131 8/6 7 7
10134 7/5 2 2
10135 9/6 5 5
10137 8/4 7 7
10140 9/6 8 7
10141 7/4 4 4
10146 7/5 6 6
10147 7/6 6 6
10151 13/6 6 6
10161 16/8 6 4
10162 10/8 9 9

Table 5: Analysis of Ideal Composite Knots (Selected Through 8 crossings)
Knot h(K) ER(K) EV R(K)
31#31 1/2 1 1
31#41 3/2 2 2
31#51 4/3 3 2
31#52 5/3 2 2

31#− 31 3/2 3 3
31#− 51 3/3 3 2
31#− 52 6/4 4 4
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the number of edge and vertex independent paths in the graph connecting the454

unknot vertex to the global knot vertex.455

Our analysis of prime knots through 9 crossings, a sampling of 10 crossing456

knots, and a sampling of composite knots demonstrates that these measures are457

interesting tools for assessing the complexity of an ideal knot. The analysis fur-458

ther identifies instances of complex evolutionary structure, such as contiguous459

knotting regions representing knot types separated by more than one crossing460

change (as reflected in their unknotting numbers). While the (2, 2n + 1)-torus461

knots are clearly those of simplest structure, our analysis calls attention to the462

apparently simple structure of some other knots, e.g. 819 and 935, among the463

knots with fewer than 10 crossings. Furthermore, we have provided a small464

sample of examples that demonstrate that the knotting pathways arising within465

ideal knots come from a quite specific set of options when compared with the466

shortest knotting pathways available, without being constrained to being sup-467

ported within the ideal knot structure.468

One may consider these quantities as defining knot invariants and, in this469

case, ask how they might be related to known knot invariants. We have sought470

correlations between the unknotting number, genus, braid index, super bridge471

number, Thurston-Benniquin number, average crossing number of ideal config-472

urations, and determinant, see [13], and our values for the prime knots through473

nine crossings. These knot invariants were selected for their diversity and intrin-474

sic three-dimensional nature. The conclusion of this facet of our investigation is475

simply the lack of apparent correlation between our measures and these knot in-476

variants, leading one to ask whether they truly represent new three-dimensional477

characteristics of a prime knot or if there is a more complex relationship to be478

identified. To illustrate our analysis, we show several scatter plots arising from479

these data in Figures 16, 17, and 18. These scatter plots represent the most480

hopeful evidence in favor of correlation. To measure the extent of correlation481

between these data, we have employed the distance correlation [45]. A distance482

correlation of 0 implies independence of the data with stronger relationships,483

including nonlinear ones, being implied by larger values. In the end, these sug-484

gest that the Cheeger constant and the number of independent paths provide485

quantities that capture new dimensions of the structure of prime knots. The486

scatter plot in Figure 18 shows that our newly defined quantities are, among487

themselves, independent measures worthy of further exploration.488
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Figure 16: Scatter plots of the Cheeger constant and edge robustness index
versus the genus for knots through nine crossings. The distance correlations
are, respectively, 0.157 and 0.327.
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Figure 17: Scatter plots of the Cheeger constant and edge robustness index
versus the average crossing number of the 32-edge ideal knot configuration [32]
for knots through nine crossings. The distance correlations are, respectively,
0.261 and 0.569.
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Figure 18: Scatter plot of the edge robustness index versus the Cheeger constant
of the knot for knots through nine crossings. The distance correlation is 0.451.
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