
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2018
T. Beeler and N. Thuerey
(Guest Editors)

Volume 37 (2018), Number 6

Distributing and Load Balancing Sparse Fluid Simulations

C. Shah, D. Hyde, H. Qu, and P. Levis

Stanford University, USA

Abstract
This paper describes a general algorithm and a system for load balancing sparse fluid simulations. Automatically distributing
sparse fluid simulations efficiently is challenging because the computational load varies across the simulation domain and time.
A key challenge with load balancing is that optimal decision making requires knowing the fluid distribution across partitions
for future time steps, but computing this state for an arbitrary simulation requires running the simulation itself. The key insight
of this paper is that it is possible to predict future load by running a speculative low resolution simulation in parallel. We
mathematically formulate the problem of load balancing over multiple time steps and present a polynomial time algorithm to
compute an approximate solution to it. Our experimental results show that distributing and speculatively load balancing sparse
FLIP simulations over 8 nodes speeds them up by 5.3× to 7.9×, and that speculative load balancing generates assignments
that perform within 20% of optimal.

CCS Concepts
•Computing methodologies → Distributed computing methodologies; Distributed simulation; Computer graphics;

1. Introduction

Modern computer graphics rely on fluid simulations to create spe-
cial effects such as floods, gushing rivers, smoke, fire, and stormy
seas. Generating these effects at high resolution is both mem-
ory and compute intensive. Recent data structures such as Open-
VDB [MLJ∗13] and sparse paged grids [SABS14] use dynamic
sparse representations such as trees to enable larger and more ef-
ficient single node simulations. By only storing simulation state
where fluid is present, these data structures enable effects like trails
of smoke and rivers over enormous volumes.

While sparse data structures are more memory efficient, simu-
lations using them are still constrained by the computational per-
formance of a single node. Simulations distributed across many
machines and hundreds of cores run faster and have greater de-
tail [MSQ∗18]. Automatically distributing dynamic sparse grid
simulations is challenging — each simulation step is limited by
the speed of the slowest node. A poor partitioning can result in a
majority of the nodes falling idle, waiting on the slowest, most over-
loaded node. Furthermore, the topology of a sparse grid changes as
fluid moves through the domain, requiring dynamically managed
partitions and neighbors. As a result, simple partitioning strategies
such as geometrically dividing the domain across nodes perform
poorly and waste cores.

Distributing partitions such that work is evenly spread across
nodes requires knowledge of the application. Historically, simula-
tion developers were expected to know how the simulation evolves
and specify a partitioning and assignment to the launcher. For in-

stance, MPI [Sni98], a message passing interface that is widely
used for writing multi-node simulations, uses a hostfile to map pro-
cess ranks to nodes at launch time. This approach has two draw-
backs. First, such a manual assignment is error prone. Second, there
are simulations such as a dam break where the distribution of fluid
across most of the domain changes with time. It is necessary to
dynamically reassign partitions to keep these simulations running
efficiently.

Optimally deciding how to assign partitions to nodes requires
knowledge about how fluid distribution will evolve in the future.
Doing this automatically for any arbitrary simulation requires run-
ning the simulation itself. Existing HPC approaches heuristically
approximate this using the current load distribution across parti-
tions instead [KK93, PGDS∗14]. Such a reactive approach pro-
duces assignments that are sub-optimal for future time steps, as
the computed assignments do not account for temporal variation.
Since graphical simulations often use implicit methods with large
time steps, with some techniques enabling very large CFL num-
bers [LCPF12], the computational load across partitions can change
rapidly. Effectively load balancing using just the current informa-
tion requires frequent load balancing. This is inefficient because
the overhead for load balancing scales with the size of the simula-
tion and the number of partitions and nodes; each load balancing
step requires exchange of control information and serializing and
transferring simulation data between nodes.

The key insight of this paper is that a system can quickly run a
low resolution simulation to estimate future load distribution be-
cause of how rapidly simulations scale in size and time. It proposes

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

a new approach, speculative load balancing, to optimize partition-
to-worker assignments for temporal variation. Speculative load bal-
ancing predicts future computational load across partitions by run-
ning a low resolution simulation in parallel and uses this infor-
mation to automatically compute assignments that perform well
in practice. The small execution time for the low resolution sim-
ulation makes it possible to do this with negligible overhead. This
paper makes the following contributions:

1. A design and techniques for distributing and load balancing sim-
ulations over sparse data structures such as OpenVDB.

2. An algorithm to compute partition-to-worker assignments using
load estimates for future time steps from a low resolution simu-
lation, that takes polynomial time in the number of partitions.

3. A system architecture for speculatively load balancing using a
parallel low resolution simulation.

4. Experimental evaluations that show performance benefits of dis-
tributing and speculatively load balancing sparse fluid simula-
tions. Distributing and speculatively load balancing over 8 nodes
speeds up simulations by 5.3× to 7.9×. Speculative balancing
performs within 20% of the ideal case when work is distributed
evenly across all nodes for every time step.

The source code and libraries for this system are open source and
freely available for use at https://sing.stanford.edu/
nimbus/speculative-lb.tar.gz.

2. Related Work

2.1. Simulation Techniques, Data Structures and Libraries

Graphical simulations use techniques ranging from grid or particle
based approaches to hybrid methods, meshes, and adaptive struc-
tures. SPH [GM77, DC∗96] models use a purely particle based,
Lagrangian approach. Grid-based methods typically use a stag-
gered MAC grid [HW65] for greater accuracy, an uncondition-
ally stable semi-Lagrangian advection scheme for advecting quan-
tities [Sta99], and a pressure Poisson solver for enforcing in-
compressibility [FSJ01]. Particle-in-cell based approaches such as
FLIP, PIC and APIC [ZB05, Har62, JSS∗15] advect particles to re-
duce dissipation, and use grids to perform computations, such as
enforcing incompressibility, that are difficult over particles. The
particle-level set method [EFFM02] uses a thin band of particles
near the interface to improve visual accuracy. Narrowband FLIP
maintains particles in a narrow band near the surface and advects
quantities directly over the grid in the interior [FAW∗16]. Other
approaches use meshes to track fluid surfaces [WMFB11].

OpenVDB [MLJ∗13] and sparse paged grids [SABS14] allow
efficient representation of sparse quantities over large domains.
Adaptive data structures such as octrees [LGF04, AGL∗17] and
chimera grids [EQYF13] use more detailed grids around visually
interesting regions such as surfaces and vortices. Other approaches
use a high resolution sparse grid to capture the surface more ac-
curately, while enforcing incompressibility over a lower resolution
grid [GBW16]. All these simulation methods show significant vari-
ation in computational requirements over time and space, and can
benefit from load balancing. Load balancing simulations becomes
even more important with recently developed techniques that allow
very large time steps [LCPF12].

PhysBAM [DHF∗11] is an open-source library that supports
fluid simulations using the particle-levelset method, and stati-
cally distributes simulations over multiple cores and nodes using
MPI [Sni98]. Mantaflow [TP16], another library, supports FLIP
and narrowband FLIP, and OpenVDB volumes. Mantaflow sup-
ports parallelism over a single node using OpenMP [DM98], Intel
Threading Building Blocks [Phe08] and CUDA. Commercial vi-
sual effects software such as Maya [May18], Houdini [Hou18] and
Blender [Ble18] that support fluid simulations also use static parti-
tioning. Speculative load balancing can benefit all of these, as fluid
simulations show variation in fluid distribution and computational
load across space and time.

Low resolution simulations generated using simulation or ani-
mated by artists have been successfully used for guiding high res-
olution simulations [Chr10, NCZ∗09, NB11, RTWT12]. This paper
uses low resolution simulation to speculatively compute partition-
to-worker assignments for a high resolution simulation.

2.2. Load Balancing

Many partitioning algorithms have been developed to distribute
partitions evenly and minimize communication across nodes.
Graph partitioning algorithms can compute an effective assignment
for partitions with arbitrary topology given an estimate for work
for each partition and for communication overhead between parti-
tions [KK96, CBD∗07, Kar03]. Geometric partitioning algorithms
such as recursive bisection [BB87] and space-filling curves [PB94]
can be used to map partitions for simulations over grids and parti-
cles. Greedy list scheduling with partitions sorted by load produces
an assignment with theoretical guarantees on imbalance [KT06].
However, a naive implementation of greedy load balancing can pro-
duce a large communication overhead from ghost exchanges.

As a simulation evolves and the work across partitions changes,
it is necessary to remap partitions to keep the simulation running
efficiently. Work-stealing approaches redistribute load across cores
by having idle cores fetch work from busy cores on the same
node [FLR98, Phe08] or remote nodes [LKK14]. Work-stealing
approaches work well on shared memory machines, but can suf-
fer from large overhead due to repeated rebalancing in a multi-
node setting. Many dynamic load balancing schemes use an es-
timate of load across partitions from the current step to recom-
pute partition-to-worker assignment and rebalance load for future
steps [SKK00, PGDS∗14, KK93, BDF∗07]. This estimate is either
provided by the application — using information such as number
of particles or cells — or computed by the runtime using the to-
tal compute time over each partition. Scratch-Remap algorithms
recompute a new assignment from scratch and then map groups
to worker nodes using similarity with the previous assignment, so
as to minimize migration costs [OB98]. Cut-and-paste methods at-
tempt to reduce the migration costs by incrementally moving par-
titions from overloaded nodes to underloaded nodes, but can im-
pose large communication overhead as many neighboring partitions
get assigned to different nodes [SKK00]. Diffusive load balancing
schemes model the migration problem as a flow problem and incre-
mentally update assignments by moving partitions from overweight
nodes to neighboring nodes, so as to minimize a combination of
migration overhead and edge cut [OR94, HBE98].

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://sing.stanford.edu/nimbus/speculative-lb.tar.gz
https://sing.stanford.edu/nimbus/speculative-lb.tar.gz


C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

While traditional load balancing methods use a single scalar to
represent load for each partition, multi-dimensional load balancing
problems generalize this to multi-dimensional vector loads, pos-
sibly representing different quantities such as CPU, memory, and
network requirements. Recent work on multi-dimensional load bal-
ancing includes techniques to minimize the maximum load across
each dimension, and across all workers [BOVVDZ16, CK04].

2.3. Systems and Techniques for Distributing Simulations

MPI [Sni98] is a parallel runtime that provides various communi-
cation primitives for application writers to send and receive mes-
sages between processes. Computation and communication are in-
terleaved, so writing correct and high performance code requires
extensive developer effort and careful placement of data exchanges.
Charm++ [KK93] resembles MPI, but includes additional support
to load balance applications using runtime measurements.

Task-based systems such as Canary [QMSL18], Le-
gion [BTSA12], HPX [KHAL∗14] , Uintah [HMB12] and
Nimbus [MQSL17, MSQ∗18] model computations as a sequence
of tasks that read or modify data objects. These systems automati-
cally schedule computations such that inter-task dependencies are
satisfied and overlap computation with communication. They also
include support for remapping partitions. Unlike other systems
that use a centralized controller, Canary uses an asynchronous
control plane that can scale out to a large number of nodes
and high task rates. Micro-partitioning or over-decomposition
reduces communication overhead from ghost data exchanges
between neighboring partitions. It does so by partitioning the
simulation domain so that there are multiple partitions per core,
and by scheduling computations and communication so that they
overlap [BVK09]. We use Canary to distribute our simulations,
and micro-partitioning to mask the delay of ghost data exchanges.

Domain specific languages such as Liszt [DJP∗11],
Ebb [BSL∗16], Simit [KKRK∗16], and Regent [SLT∗15] au-
tomatically parallelize simulations, but do not automatically
load-balance simulations.

3. Distributing and Load Balancing

Distributing a simulation has two benefits. First, it enables larger
simulations that can generate higher amounts of visual de-
tail [MSQ∗18]. Second, distribution makes the same simulation
complete faster, reducing turnaround times from several days to
less than a day. Since the amount of time required to compute over
a partition is a function of the amount of fluid and details such as the
fluid-air interface and vortices it contains, computation time varies
over different partitions. In order to achieve speedup proportional
to the number of nodes, it is important to assign partitions such that
work is evenly distributed across these nodes. For instance, using
twice the number of cores for a dam break simulation should re-
duce the simulation completion time by half, but if half of the cores
sit idle, the simulation will still take the same amount of time.

3.1. Distributing Sparse Simulations

We micro-partition the simulation domain so that there are 4 to
16 partitions per core. Micro-partitioning is useful for two reasons.

First, it enables load balancing. With a single partition per core,
the time that a simulation step takes is determined by the core run-
ning the partition with the most fluid. With multiple partitions per
core, it becomes possible to distribute work more evenly by assign-
ing each node its fair share of partitions with high computational
load. Second, micro-partitioning helps mask the overhead of ghost
data exchanges with computation [BVK09]. A core running com-
putations over a single partition cannot start the computation until
all data dependencies are met. When these dependencies include
ghost data from neighboring partitions, the core blocks while wait-
ing for all data. With multiple partitions per core, it can instead start
computing over another partition with dependencies satisfied.

We use OpenVDB [MLJ∗13] for representing sparse fluid data.
OpenVDB is a volumetric data structure for representing large,
sparse grids. It uses dynamic B+ trees with large branching factors,
fast bit operations, and caching of nodes to provide memory effi-
cient sparse grids with fast sequential and stencil access to voxel
data. We split a large OpenVDB simulation into smaller simula-
tions by geometrically partitioning OpenVDB voxels into regions.
Each partition is a single-threaded sub-simulation: it maintains a
separate OpenVDB tree with its own copy of the root node, inter-
nal nodes, leaf nodes, and voxel data for the region it owns and
for neighboring ghost (shared) regions. The system automatically
schedules and stitches together the sub-simulations to produce a
single large simulation, similar to Nimbus [MSQ∗18].

3.2. Speculative Load Balancing

A common way to distribute simulations is to statically divide the
simulation domain geometrically across nodes. Using the distribu-
tion of fluid across partitions at the beginning and knowledge about
how the distribution evolves over time, a developer can manually
specify a partitioning and assignment that distributes work some-
what evenly for most time steps. However, there are simulations,
such as a dam break, where the amount of fluid in each partition
varies greatly over time, and for which no static assignment of par-
titions works well. Dynamically reassigning partitions to balance
load can lead to speedups of 1.7-2.7× over static assignment.

Existing HPC load balancing approaches reactively balance load
by using current partition load estimates to periodically recom-
pute assignments and redistribute work [SKK00,PGDS∗14,KK93,
BDF∗07]. Greedily optimizing for the current distribution without
accounting for temporal variation, however, can produce assign-
ments that perform sub-optimally for later time steps. If multiple
partitions with increasing load are assigned to the same worker, the
worker will slow down progress for later time steps. With graph-
ical simulation techniques that allow large time steps, it becomes
even more important to account for variation as the amount of fluid
in each partition changes more rapidly with time.

Accounting for load variation over time requires information
about the future. In general, it is not possible to do this automat-
ically for an arbitrary simulation without running the simulation
itself. The key idea that speculative load balancing uses is that it is
possible to quickly estimate fluid distribution over time for graph-
ical fluid simulations over sparse uniform grids by running a low
resolution simulation in parallel. Since the amount of time required

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

to run a simulation scales super-linearly with the simulation size,
the overhead from running a low resolution simulation is very low.
For instance, a 3D simulation that is 8 times smaller in each dimen-
sion can advance a single step 83 = 512 times faster. Furthermore,
the low resolution simulation requires fewer time steps to advance
the same frame time and fewer solver iterations to enforce incom-
pressibility. With a small execution time that is further masked by
running in parallel with the high resolution simulation, the low res-
olution simulation presents negligible overhead.

Speculative load balancing estimates computational load over
time by running a low resolution simulation ahead of the high reso-
lution simulation. It uses these estimates to periodically recompute
an assignment of partitions that is close to optimal for the entire
duration of the assignment. The remainder of this section mathe-
matically formulates the problem of load balancing over multiple
time steps and develops a polynomial time algorithm to compute
an approximate solution to the problem.

3.3. Model and Cost Function

Let N be the total number of worker nodes over which the high res-
olution simulation is distributed and P be the total number of par-
titions. Let a T -dimensional vector Bp denote the computational
load for partition p for T time steps, and Bt

p denote the load for
p at time step t. Computational load for a partition for a step is a
measure of the amount of time it takes to perform computations
and advance the step over the partition. For a FLIP simulation with
a uniform number of particles per fluid cell, this is proportional to
the number of fluid cells the partition contains.

The ideal distribution of load across all nodes is when the com-
putational load is distributed evenly across all nodes, so that each
node has Ĉt = ∑

P
p=1B

t
p/N load at every time step. Let A denote

the partition assignment matrix so that Ai
p = 1 indicates that par-

tition p is assigned to node i. Since the time that step t takes is
proportional to the maximum amount of load a worker has at step
t, we define the cost Ct of an assignment at time t as:

Ct =
N

max
i=1

P

∑
p=1

Ai
pB

t
p (1)

The total cost of assignment A for T time steps is the sum of cost
for each step:

C =
T

∑
t=1

N
max
i=1

P

∑
p=1

Ai
pB

t
p (2)

The above cost estimate ignores inter-partition communication
cost. However, since we use micro-partitioning as described in Sec-
tion 4, computations and ghost data exchanges overlap, reducing
the overhead from ghost data exchanges [BVK09].

The load balancing problem for T time steps is now as an integer
program, where the optimal assignment A is the solution to the
following optimization problem:

minimize
T

∑
t=1

N
max
i=1

P

∑
p=1

Ai
pB

t
p

Algorithm 1 Greedy List Scheduling For A Single Step

1: P← number of partitions
2: B← P-dimensional list of scalar load for each partition
3: N← number of worker nodes
4: procedure GREEDYLISTSCHEDULE(P, B, N)
5: L← N-dimensional worker load list, initialize to zero
6: A← P-dimensional partition assignment list
7: I← IndicesSortedInDescendingOrderBy(B)
8: for p in I do
9: n← ArgMin(L)

10: L[n]←L[n]+B[p]
11: A[p] = n

12: return A

subject to:

Ai
p ∈ {0,1} ∀p, i

N

∑
i=1

Ai
p = 1 ∀p

(3)

The constraints Ai
p ∈ {0,1} and ∑

N
i=1A

i
p = 1 ∀p ensure that each

partition is assigned to exactly one node.

3.4. Optimizing for a Single Step

For a single time step, the integer program in Equation 3 re-
duces to minimizing Ct = maxN

i=1 ∑pA
i
pB

t
p. This problem is NP

hard [KT06]. Simplifying the integer program to a linear program
so that Ai

p is constrained to be in [0,1] instead of {0,1} does not
produce a useful assignment. Since the problem is symmetric in p
and i, the optimal solution to the relaxed problem is Ai

p = 1
N , that

is, to split each partition equally across all nodes.

We propose using a polynomial time algorithm, greedy list
scheduling, to compute an approximate solution to the single step
load balancing problem [KT06]. Greedy list scheduling with tasks
sorted by load generates an assignment that is guaranteed to be
within 4

3 of the optimal [Gra69]. It visits tasks in decreasing or-
der of load and incrementally assigns each task to the worker node
with the least amount of total work assigned so far. Algorithm 1
describes the algorithm in detail.

3.5. Optimizing for Multiple Steps

This section generalizes greedy list scheduling for a single time
step to multiple time steps. Greedy list scheduling takes in a scalar
load estimate for each partition to sort the partitions and determine
the worker with the least amount of work. A naive way to extend
this approach to multiple time steps is to compute a scalar repre-
senting the mean load B̂p for each partition,

B̂p =
1
T

T

∑
t=1

Bt
p (4)

and run greedy list scheduling using the mean partition load, so as
to minimize maxN

i=1 ∑
P
p=1A

i
pB̂

t
p. The problem with this approach

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

Algorithm 2 Scheduling For Multiple Time Steps

1: P← number of partitions
2: T ← number of time steps
3: B← P×T partition load matrix
4: N← number of worker nodes
5: procedure MULTISTEPSCHEDULE(P, T , B, N)
6: L← N×T worker load matrix, initialize to zero
7: A← P-dimensional partition assignment list
8: B̂← 1

T ×∑
T
t=1B[:, t]

9: I← IndicesSortedInDescendingOrderBy(B̂)
10: for p in I do
11: L′← N×T matrix, initialized to zero
12: for i in range(N) do . Load on i if p is assigned to it
13: L′[i, :]←L[i, :]+B[p, :]

14: Dp← N-dimensional cost list, initialize to zero
15: for t in range(T ) do . Cost of assigning p to node i
16: Dp[i]←Dp[i]+max(L′[i, t],L[−i, t])

17: n← ArgMin(Dp)
18: L[n, :]←L[n, :]+B[p, :]
19: A[p] = n

20: return A

is that multiple partitions with similar trends, increasing or decreas-
ing load, may get assigned to the same node. When the temporal
variation is large, this results in a poor assignment.

The key idea that makes greedy list scheduling work well for a
single step is that a sub-optimal assignment for tasks with a small
load is better than a sub-optimal assignment for tasks with a large
load. By visiting partitions in the decreasing order of their load,
greedy list scheduling assigns and spreads out the bigger partitions
first. We generalize this approach for computing assignments with
T -dimensional loads. Since there is no clear way to order partitions
with T -dimensional loads, we sort them by their mean load, B̂p
given by Equation 4. Ordering partitions by their mean load works
well in practice, as partitions with large loads get assigned first.

Algorithm 2 describes our algorithm. The algorithm visits each
partition in decreasing order of mean load and computes the incre-
mental cost of assigning the partition to each node. The incremental
cost Di

p of assigning a partition p to a node i is:

Di
p =

T

∑
t=1

N
max
j=1

(load at node j assuming p is assigned to i)

The algorithm assigns the partition p to the node with the least
amount of cost Di

p. As the incremental cost for assigning a parti-
tion with increasing load to a node with increasing load is higher
than the cost for assigning the partition to a node with decreasing
load when the two nodes have the same mean load, this algorithm
outperforms the naive extension that runs greedy list scheduling
with per partition mean load.

Speculative load balancing uses this algorithm to compute an as-
signment using partition load estimates for multiple time steps from
a low resolution simulation. Section 5 presents results for specu-

Algorithm 3 Basic FLIP/PIC Simulation Algorithm

1: Initialize particle positions and velocities
2: for each frame do
3: while frame not done do
4: Compute time step
5: Transfer particle velocities to grid
6: Save grid velocities
7: Add forces
8: Apply boundary conditions
9: Make velocity divergence-free

10: Compute velocity update over grid
11: Update particle velocities by interpolating grid values
12: Update particle positions using updated velocities

13: Save particle positions and velocities

lative load balancing, demonstrating that this algorithm produces
assignments that perform within 20% of the ideal case.

4. System Design and Implementation
We use Canary [QMSL18] for distributing a basic FLIP/PIC sim-
ulation that uses OpenVDB grids for storing simulation quantities.
Canary uses an asynchronous control plane to provide the schedul-
ing flexibility of a centralized controller with the scalability of a
dataflow system such as MPI.

4.1. FLIP Simulation

We implemented a basic FLIP/PIC algorithm [ZB05] for simulat-
ing water in C++. Algorithm 3 lists all steps for reference. Our
simulation uses 8 particles per cell, and a block diagonal precon-
ditioner using incomplete Cholesky factorization. Our solver does
not account for advanced effects such as surface tension and viscos-
ity [?, ?]. We expect that our methodology would provide similar
benefits under variations of the basic FLIP algorithm.

Our simulation uses a staggered grid for velocity and stores grid
fields such as velocity and pressure using separate OpenVDB grids.
We also use OpenVDB for representing particles as a grid of linked
lists of buckets of particles. Only those voxels that contain fluid are
active, the rest default to the background value. The grids use trees
with one level of internal nodes and a branching factor of 23 along
each dimension, for internal and leaf nodes.

4.2. Distributing With Canary

An application developer provides a driver program, and serializa-
tion/deserialization methods for the simulation variables. A driver
program specifies three things: (1) typed simulation variables that
are either scalars that represent global variables such as the time
step, or fields such as OpenVDB grids, (2) a sequence of Canary
tasks over typed simulation variables with read and write data de-
pendencies for each task, and (3) a fixed partitioning to use for the
simulation variables.

A task may be a compute task that reads and writes OpenVDB

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

Figure 1: Speculative load balancing uses load estimates for future steps from a parallel low resolution simulation. Reactive load balancing
computes assignments based on current load. A central controller keeps a list of contiguous simulation time intervals and assignments to use
for each interval, as computed by the load balancer, and issues required migrations whenever there is an update to partition map.

Figure 2: A driver program declares typed variables and launches
a sequence of tasks over these variables. The system automatically
assigns partitions schedules sub-simulations over partitions.

data and invokes single-threaded simulation functions such as mov-
ing particles or transferring particle quantities to grid, a scatter task
that outputs data to be sent to other partitions, or a gather task that
reads data received from other partitions. Canary transforms the
driver program into a series of parallel tasks over partitions, assigns
partitions and tasks to worker nodes [QMSL18], and manages data
exchanges between workers. Each worker node uses a thread pool
to execute tasks over all the partitions it owns. Tasks over empty
partitions with no active voxels return immediately. The system au-
tomatically schedules sub-simulations over partitions to produce a
single large simulation. Figure 2 illustrates this.

We added functions to serialize and deserialize OpenVDB grid
data over a given geometric region. These are invoked for ghost
data exchanges and data migration.

4.3. Load Balancing

A central load balancer uses load estimates to periodically compute
a partition map specifying a worker for each partition, and sends the
computed map, along with the simulation time interval over which
to use it, to the controller. Reactive load balancing uses the current
load directly from the high resolution simulation and Algorithm 1;
speculative load balancing uses load estimates for future steps from
the low resolution simulation and Algorithm 2.

We use the number of fluid cells in a partition as an estimate of
the computational load for the partition. As Figure 1 shows, spec-
ulative load balancing interleaves a low resolution simulation with
the high resolution simulation. The low resolution simulation runs
in parallel with the high resolution simulation, and ahead of the
high resolution simulation by a fixed number of frames W , giving
load estimates for next W frames. Thus, a low resolution simula-
tion produces a load estimate for frame f +W as the high resolu-
tion simulation advances frame f . The low resolution simulation is
partitioned across the available cores on the controller node. Run-
ning the low resolution simulation in parallel has two advantages.
First, it helps to mask the already small overhead of running the low
resolution simulation. Second, it makes it possible to add synchro-
nization between the low and high resolution simulation to reduce
divergence. While we did not encounter divergence in the bulk fluid
distribution across partitions for the simulations we ran, we expect
some synchronization to be necessary for longer simulations with
more turbulence; we leave a study of synchronization methods and
frequency for future work.

Each partition over the high resolution simulation sends a mes-
sage to the controller after every time step, indicating the simulation
time to which it has advanced. If there is a new partition map for
the next time step and an update to the worker assignment for that
partition, the controller issues a migration command to the source
worker that currently owns the partition and the destination worker
which is the new owner of the partition. A partition migration is
transparent to the application. After any issued migration has com-
pleted, computation over the partition proceeds to the next step.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

5. Evaluation

We evaluate the benefits of distributing and load balancing sparse
simulations by answering the following questions: (1) How much
does distributing sparse simulations speed up simulations? (2) How
well does speculative load balancing distribute work? (3) How
much improvement does speculative load balancing give over static
geometric partitioning and reactive load balancing?

To demonstrate the benefits of distributing and load balancing
conditions, we present results for four simulations, distributed over
8 nodes using static geometric partitioning, reactive load balancing,
and speculative load balancing over 8 nodes. Single-node simula-
tions are also run as a baseline. The four simulations are:

1. A sphere drop, where a sphere of water falls into a reservoir
of water, as shown in Figure 4. As the sphere gains velocity, it
moves rapidly through space, testing performance with rapidly
moving fluid. As the sphere drops into water and generates
splashes that are under-resolved by the coarse simulation, this
experiment demonstrates how a coarse simulation can generate
good load estimates without synchronizing. We present results
for 200 frames for this simulation.

2. A one-way dam break, where water flows out in the absence of
a wall, as shown in Figure 5. This simulation exhibits a large
amount of variation as the distribution of fluid over a large part
of the simulation domain changes with time. We present results
for 200 frames for this simulation.

3. A two-way dam break as shown in Figure 6. This simulation
exhibits a large amount of variation similar to the one-way dam
break. This simulation also exhibits splashes as the two bodies
of water hit each other and solids, and hence demonstrates how
well a coarse simulation can approximate the bulk fluid distribu-
tion in a high resolution simulation. We present results for 300
frames for this simulation.

4. A simulation with two sources of water and another water reser-
voir with missing walls, as shown in Figure 7. This simulation
also demonstrates large variation and tests the approximation
from the low resolution simulation. As the water from the two
sources hit each other and the pool of water, they generate de-
tails such as thin splashes. Additionally, water flowing in from
sources and the water falling out from the reservoir generate
large spatial and temporal variation in the bulk distribution of
fluid. We present results for 300 frames for this simulation.

5.1. Simulation and Experiment Details

All results for high resolution simulations are run over a 10243 grid.
The experiments use micro-partitions of size 16× 8× 16 for the
simulations with two-way dam break and sources, 16× 16× 8 for
sphere drop, and 16×8×8 for one-way dam break. These generate
Canary tasks over 64×128×64, 64×64×128 and 64×128×128
voxels respectively. Geometric partitioning divides the domain into
2×2×2 for the sphere drop, two-way dam break and sources with
falling water, and 2×1×4 for the one-way dam break simulation.
Speculative load balancing uses a low resolution simulation over
a 1283 grid, which is 8× 8× 8 times smaller than the high res-
olution simulation. The load balancer for reactive load balancing
recomputes assignments every 30 time steps of the high resolution

simulation. The load balancer for speculative balancing recomputes
assignments every 30 steps of the low resolution simulation.

The multi-node experiments that use geometric partitioning and
reactive and speculative load balancing run the high resolution sim-
ulation over 8 worker nodes with 8 cores each, totaling to 64 cores.
We use Google Cloud n1-highmem-8 instances for the worker
nodes. Each node has 8 physical cores and 52GB memory. For
single-node experiments, we use a customized single 8-core in-
stance with RAM extended to 150GB.

Both the low and high resolution simulations use 8 particles per
cell and a frame rate of 30 frames per second. The high resolution
simulations use a CFL number of 8. The low resolution simula-
tions scale down the step size by using a proportionately smaller
CFL number of 1. Speculative load balancing starts by first running
the low resolution simulation for 30 frames and then interleaving
the low and high resolution simulations from that point forward, as
described in Section 4. The low resolution simulation runs on the
same node as controller, over the available cores. In all our experi-
ments, we found that the overhead for the low resolution simulation
is less than 1%. This is because the computation time scales super-
linearly — the time to compute a time step for the low resolution
simulation is 2 orders of magnitude less than that for the high reso-
lution simulation, the low resolution simulation requires fewer iter-
ations for the Poisson solver, and even with the scaled down CFL,
the low resolution simulation requires fewer time steps to advance
the same frame time in our experiments.

The final renderings are generated from level set representations
of the fluid. We generate signed distance functions from the fluid
particles using OpenVDB tools to rasterize particles with a radius
of 1.6 voxel units, followed by a single pass of a Gaussian filter.

5.2. Distributed Simulations

Busy time is the total wall clock time all cores spend in compute
tasks that invoke simulation functions. Average busy time is busy
time averaged across time steps and across all cores. This is the
amount of time a simulation would take if work were distributed
evenly across all nodes for all time steps and there were no com-
munication overhead. Maximum busy time is the maximum busy
time across workers, averaged across time steps. This gives a mea-
sure of the amount of load imbalance, quantifying how well the
load balancing algorithm balances load. Total time is the total time
that a time step takes including communication overhead, and is
averaged across time steps. This can vary from cluster to cluster, as
the overhead is a function of the underlying network infrastructure.

Table 1 shows the average and maximum busy time and total
speedup over single node for the four simulations distributed over
8 nodes, for the first half and the second half of each simulation.
The total time per step on a single node for the initial 100 frames
is 157s for sphere drop and 467s for the one-way dam break, and
498s and 527s for the initial 150 frames for the two-way dam break
and sources. Distributing the simulations over 8 nodes with 8 cores
each using static geometric partitioning speeds up the simulations
by 2.5× for sphere drop, 4.1× for one-way dam break, 2.7× for
two-way dam break and 2.8× for sources. The total speedup using
speculative load balancing is 5.3× to 7.2×.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

Sphere Drop (1-100) One-Way Dam (1-100) Two-Way Dam (1-150) Sources (1-150)
Ave. Max Busy Speedup Ave. Max Busy Speedup Ave. Max Busy Speedup Ave. Max Busy Speedup

Single Node 153 153 1.0 437 437 1.0 455 455 1.0 468 468 1.0
Geometric 16 59 2.5 42 99 4.1 49 172 2.7 47 164 2.8
Reactive 16 24 4.7 41 58 6.3 50 62 5.2 50 79 4.5
Speculative 16 19 5.6 43 47 7.2 51 56 6.0 50 57 5.3

Sphere Drop (101-200) One-Way Dam (101-200) Two-Way Dam (151-300) Sources (151-300)
Ave. Max Busy Speedup Ave. Max Busy Speedup Ave. Max Busy Speedup Ave. Max Busy Speedup

Single Node 145 145 1.0 677 677 1.0 545 545 1.0 422 422 1.0
Geometric 15 65 2.2 61 137 4.6 62 210 2.7 43 132 3.2
Reactive 15 16 5.7 57 69 7.6 60 64 5.8 48 52 5.7
Speculative 15 16 5.9 56 62 7.9 61 70 5.6 47 53 5.5

Table 1: Per step average and maximum busy times in seconds and total speedup over single node for four simulations. The upper rows rows
give numbers averaged over the initial frames — 1 to 100 for sphere drop and one-way dam break, and 1 to 150 for the two-way dam break
and sources. The lower rows give numbers averaged over remaining 100 frames for sphere drop and one-way dam break, and the remaining
150 frames for two-way dam break and sources.

(a) Sphere drop (b) One-way dam break (c) Two-way dam break (d) Sources
Figure 3: Load imbalance factor for geometric assignment and reactive and speculative load balancing for 10243 simulations over 8 worker
nodes. Load imbalance for initial frames is in dark gray and for the later frames is in light gray. Speculative load balancing performs within
20% of the ideal case for all cases.

The total time per step on a single node is 145s and 735s for the
remaining 100 frames for the sphere drop and one-way dam break,
and 602s and 468s for the remaining 150 frames for the two-way
dam break and sources respectively. The speedup from geometri-
cally partitioning and distributing these simulations ranges from
2.2× to 4.6×, similar to the initial frames. Speculative load balanc-
ing gives similar speedups as before, ranging from 5.5× to 7.9×.
The later frames in our examples have less temporal variation in
computational load. This is because the later frames exhibit more
visually interesting effects such as splashes, but have less variation
in fluid distribution, and also because of the small time steps result-
ing from large fluid velocities and turbulence. Due to less temporal
variation in computational load for later frames, reactive load bal-
ancing gives speedups similar to speculative load balancing, rang-
ing from 5.7× to 7.6×. In cases such as these where the past is a
good predictor of the future load, speculative load balancing does
not provide an advantage over reactive load balancing.

Total iteration time is a function of the maximum busy time and
synchronization overhead from ghost data exchanges and global re-
ductions that are necessary for the Poisson solver. Communication
overheads from global reductions are independent of how partitions
are assigned to nodes, and hence, the load balancing algorithm.

Synchronization overhead depends on underlying network charac-
teristics such as latency and bandwidth, and solver efficiency, and
can be reduced by using better network infrastructure and solvers.
Cloud nodes have high inter-node latency; we measured a latency
of 100µs on Google Cloud. Many modern clusters use high perfor-
mance network interconnects such as InfiniBand [Pfi01] that pro-
vide much lower latency. Highly scalable Poisson solvers [CZY17],
which is an active area of research, can further reduce the overhead.

Maximum busy time indicates possible speedups in the absence
of synchronization overheads. Distributing the simulations using
geometric partitioning reduces maximum busy time by 2.6× to
4.9×. Reactive load balancing reduces this further to give a net
reduction of 5.9× to 9.8×. Speculative load balancing gives a total
reduction of 7.8× to 10.9×. We believe that the super-linear reduc-
tion greater than 8× in busy times when distributing over 8 nodes
is due to NUMA inefficiencies — the large memory on single node
forces sockets to access memory on remote sockets.

5.3. Load Balancing

The load imbalance factor is the ratio of maximum busy time to
average busy time, maximum busy time

average busy time . It indicates how well the load

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

Figure 4: Snapshots for a sphere drop simulation show how fluid distribution varies over time as the sphere falls into a reservoir of water.

Figure 5: Snapshots for a one-way dam break simulation — the fluid distribution over a large portion of the domain changes as the water
flows out, leaving regions with water at the beginning empty and filling up empty regions.

is balanced — a large load imbalance factor implies that there are
some nodes with a lot more computational load, a load imbalance
factor of one indicates a perfectly balanced simulation. Load im-
balance, like maximum busy time, indicates possible speedup with-
out synchronization overheads.

Figure 3 shows the load imbalance factor for the multi-node ex-
periments. Static geometric partitioning performs poorly as work
is unevenly distributed across nodes and this distribution changes
over time. The load imbalance factor for static geometric partition-
ing is more than 2 for all four simulations. Load balancing reac-
tively brings the load imbalance factor to 1.1-1.6 — within 60%
the ideal case. Speculative partitioning performs with 20% of ideal
for all four simulations for the entire duration of the simulation, the
highest load imbalance factor being 1.2. The gains from specula-
tive load balancing are highest during the initial frames when there
is more variation in computational load across time steps.

5.4. Limitations

Speculative load balancing is useful when the low resolution simu-
lation provides a representative estimate of load distribution across
partitions over time, and when there is more temporal variation in

the computational load. For the experiments we ran, speculative
load balancing achieves a load imbalance within 1.2× of the ideal,
without synchronization. As the included videos demonstrate, the
later frames for the sphere drop, two-way dam break and sources
differ in high resolution details such as thin splashes. Our current
implementation does not synchronize the low resolution and high
resolution simulations, which can produce slightly inaccurate es-
timates for the later frames. We expect synchronization to be im-
portant for more turbulent simulations and simulations run over a
longer time, to provide consistent gains. Additionally, when the
bulk fluid distribution over partitions varies less rapidly and the
past is a good predictor of the future, speculative load balancing
provides little benefit over reactive load balancing. Due to the in-
significant overhead of the low resolution simulation, speculative
load balancing still performs well. As Table 1 shows, reactive load
balancing and speculative load balancing give similar gains over
static partitioning for the later frames, when there is less variation
in computational load across time steps.

6. Discussion and Future Work

Distributed fluid simulations can have greater visual detail and
faster turnaround times, but automatically distributing simulations

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

Figure 6: Snapshots for a two-way dam break simulation — the simulation shows large variation in bulk distribution initially.

Figure 7: Snapshots for the simulation with two sources and a reservoir — the sources are active for 2 seconds, and the simulation generates
high splashes as the water from the sources hit each other and the reservoir.

efficiently is challenging. This paper presents a system design and
techniques to automatically distribute sparse fluid simulations ef-
ficiently. The key idea is speculative load balancing, which runs a
low resolution simulation to predict load across partitions, and uses
micro-partitions and a polynomial time algorithm to effectively dis-
tribute load. This is a general technique that can be used to load
balance any simulation where a low resolution simulation provides
a good estimate of future load, and is particularly useful for simu-
lations that exhibit large temporal variation in the fluid distribution.

Experimental results for FLIP simulations show that even with-
out synchronization, speculative load balancing performs within
20% of the ideal case when work is evenly distributed for all time
steps. We believe that synchronization is important to achieve con-
sistent gains for more complex simulations and for longer runs, but
that is an area of future work. Our fluid solver implements a ba-
sic FLIP/PIC algorithm without advanced effects such as surface
tension and viscosity. Exploring how speculative load balancing
performs with these advanced effects and also for other simula-
tions such as smoke and fire is another area of future work. We
believe that other simulation techniques such as particle level set
methods [EFFM02], narrowband FLIP [FAW∗16] and mesh-based
simulations [WMFB11] that selectively simulate details at a higher

resolution can also benefit from speculative balancing. However,
the straightforward model of using fluid cells to estimate computa-
tional load for partitions does not apply to these techniques, due to
variation in the computations near and far from the surface. Devel-
oping more accurate models to estimate load for these techniques
could enable them to be speculatively load balanced as well.

Acknowledgements

We would like to thank Ron Fedkiw and his research group, who
have been tremendously helpful in answering questions about fluid
simulations. We would also like to thank Pat Hanrahan and Intel
for inviting us to be part of the Intel ISTC-VC and introducing us
to the unique systems challenges that computer graphics faces. We
would like to thank the Platform Lab at Stanford for their support
and feedback. We are thankful to the reviewers for their comments
and suggestions that were very helpful in improving this paper.

This work was funded by the National Science Foundation (CSR
grant #1409847) and conducted in conjunction with the Intel Sci-
ence and Technology Center - Visual Computing. The experiments
were made possible by a generous grant from the Google Cloud
Platform Education Grants program.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

References

[AGL∗17] AANJANEYA M., GAO M., LIU H., BATTY C., SIFAKIS E.:
Power diagrams and sparse paged grids for high resolution adaptive liq-
uids. ACM Transactions on Graphics (TOG) 36, 4 (2017), 140. 2

[BB87] BERGER M. J., BOKHARI S. H.: A partitioning strategy for
nonuniform problems on multiprocessors. IEEE Transactions on Com-
puters, 5 (1987), 570–580. 2

[BDF∗07] BOMAN E., DEVINE K., FISK L. A., HEAPHY R., HEN-
DRICKSON B., VAUGHAN C., CATALYUREK U., BOZDAG D.,
MITCHELL W., TERESCO J.: Zoltan 3.0: parallel partitioning, load-
balancing, and data management services; userâĂŹs guide. Sandia Na-
tional Laboratories, Albuquerque, NM (2007). 2, 3

[Ble18] Blender. https://www.blender.org/, 2018. 2

[BOVVDZ16] BANSAL N., OOSTERWIJK T., VREDEVELD T., VAN
DER ZWAAN R.: Approximating vector scheduling: almost matching
upper and lower bounds. Algorithmica 76, 4 (2016), 1077–1096. 3

[BSL∗16] BERNSTEIN G. L., SHAH C., LEMIRE C., DEVITO Z.,
FISHER M., LEVIS P., HANRAHAN P.: Ebb: A DSL for physical simu-
lation on CPUs and GPUs. ACM Transactions on Graphics (TOG) 35, 2
(May 2016), 21:1–21:12. URL: http://doi.acm.org/10.1145/
2892632, doi:10.1145/2892632. 3

[BTSA12] BAUER M., TREICHLER S., SLAUGHTER E., AIKEN A.: Le-
gion: Expressing locality and independence with logical regions. In Pro-
ceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (2012), SC ’12, IEEE Com-
puter Society Press, pp. 66:1–66:11. URL: http://dl.acm.org/
citation.cfm?id=2388996.2389086. 3

[BVK09] BECKER A., VENKATARAMAN R., KALE L.: Patterns for
overlapping communication and computation. Dept. of Computer Sci-
ence, Univ. of Illinois at Urbana-Champaign, Urbana, IL (2009). 3, 4

[CBD∗07] CATALYUREK U. V., BOMAN E. G., DEVINE K. D.,
BOZDAG D., HEAPHY R., RIESEN L. A.: Hypergraph-based dynamic
load balancing for adaptive scientific computations. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS 2007. IEEE International
(March 2007), pp. 1–11. doi:10.1109/IPDPS.2007.370258. 2

[Chr10] CHRISTENSEN B. B.: Efficient Algorithms for Controllable
Fluid Simulations and High-Resolution Level Set Deformations. 2

[CK04] CHEKURI C., KHANNA S.: On multidimensional packing prob-
lems. SIAM journal on computing 33, 4 (2004), 837–851. 3

[CZY17] CHU J., ZAFAR N. B., YANG X.: A schur complement pre-
conditioner for scalable parallel fluid simulation. ACM Transactions on
Graphics (TOG) 36, 5 (2017), 163. 8

[DC∗96] DESBRUN M., CANI M.-P., ET AL.: Smoothed particles: A
new paradigm for animating highly deformable bodies. In Proceedings
of the Eurographics workshop on Computer animation and simulation
(1996), vol. 96, Springer, pp. 61–76. 2

[DHF∗11] DUBEY P., HANRAHAN P., FEDKIW R., LENTINE M.,
SCHROEDER C.: Physbam: Physically based simulation. In ACM SIG-
GRAPH 2011 Courses (2011), ACM, p. 10. 2

[DJP∗11] DEVITO Z., JOUBERT N., PALACIOS F., OAKLEY S., MED-
INA M., BARRIENTOS M., ELSEN E., HAM F., AIKEN A., DU-
RAISAMY K., ET AL.: Liszt: A domain specific language for building
portable mesh-based PDE solvers. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (2011), SC’11, ACM, p. 9. 3

[DM98] DAGUM L., MENON R.: OpenMP: an industry standard API for
shared-memory programming. IEEE computational science and engi-
neering 5, 1 (1998), 46–55. 2

[EFFM02] ENRIGHT D., FEDKIW R., FERZIGER J., MITCHELL I.: A
hybrid particle level set method for improved interface capturing. Jour-
nal of Computational physics 183, 1 (2002), 83–116. 2, 10

[EQYF13] ENGLISH R. E., QIU L., YU Y., FEDKIW R.: Chimera grids

for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation (2013), ACM, pp. 85–94.
2

[FAW∗16] FERSTL F., ANDO R., WOJTAN C., WESTERMANN R.,
THUEREY N.: Narrow band FLIP for liquid simulations. In Computer
Graphics Forum (2016), vol. 35, Wiley Online Library, pp. 225–232. 2,
10

[FLR98] FRIGO M., LEISERSON C. E., RANDALL K. H.: The im-
plementation of the Cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language De-
sign and Implementation (1998), PLDI ’98, ACM, pp. 212–223. URL:
http://doi.acm.org/10.1145/277650.277725, doi:10.
1145/277650.277725. 2

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation of
smoke. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (2001), ACM, pp. 15–22. 2

[GBW16] GOLDADE R., BATTY C., WOJTAN C.: A practical method
for high-resolution embedded liquid surfaces. In Computer Graphics
Forum (2016), vol. 35, Wiley Online Library, pp. 233–242. 2

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed particle hydro-
dynamics: theory and application to non-spherical stars. Monthly notices
of the royal astronomical society 181, 3 (1977), 375–389. 2

[Gra69] GRAHAM R. L.: Bounds on multiprocessing timing anomalies.
SIAM journal on Applied Mathematics 17, 2 (1969), 416–429. 4

[Har62] HARLOW F. H.: The particle-in-cell method for numerical so-
lution of problems in fluid dynamics. Tech. rep., Los Alamos Scientific
Lab., N. Mex., 1962. 2

[HBE98] HU Y., BLAKE R. J., EMERSON D. R.: An optimal migration
algorithm for dynamic load balancing. Concurrency and Computation:
Practice and Experience 10, 6 (1998), 467–483. 3

[HMB12] HUMPHREY A., MENG Q., BERZINS M.: The Uintah frame-
work: A unified heterogeneous task scheduling and runtime system. In
2012 SC Companion: High Performance Computing, Networking Stor-
age and Analysis (2012), IEEE, pp. 2441–2448. 3

[Hou18] Houdini. http://www.sidefx.com/docs/houdini/
index.html, 2018. 2

[HW65] HARLOW F. H., WELCH J. E.: Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface. The
physics of fluids 8, 12 (1965), 2182–2189. 2

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOM-
AKHIN A.: The affine particle-in-cell method. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 51. 2

[Kar03] KARYPIS G.: Multi-constraint mesh partitioning for contact/im-
pact computations. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing (2003), SC ’03, ACM, pp. 56–. URL: http://
doi.acm.org/10.1145/1048935.1050206, doi:10.1145/
1048935.1050206. 2

[KHAL∗14] KAISER H., HELLER T., ADELSTEIN-LELBACH B., SE-
RIO A., FEY D.: HPX: A task based programming model in a global
address space. In Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models (2014), PGAS
’14, ACM, pp. 6:1–6:11. URL: http://doi.acm.org/10.1145/
2676870.2676883, doi:10.1145/2676870.2676883. 3

[KK93] KALE L. V., KRISHNAN S.: CHARM++: a portable concurrent
object oriented system based on C++. In ACM Sigplan Notices (1993),
vol. 28, ACM, pp. 91–108. 1, 2, 3

[KK96] KARYPIS G., KUMAR V.: Parallel multilevel k-way partitioning
scheme for irregular graphs. In Proceedings of the 1996 ACM/IEEE Con-
ference on Supercomputing (1996), Supercomputing ’96, IEEE Com-
puter Society. URL: http://dx.doi.org/10.1145/369028.
369103, doi:10.1145/369028.369103. 2

[KKRK∗16] KJOLSTAD F., KAMIL S., RAGAN-KELLEY J., LEVIN
D. I., SUEDA S., CHEN D., VOUGA E., KAUFMAN D. M., KANWAR

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://www.blender.org/
http://doi.acm.org/10.1145/2892632
http://doi.acm.org/10.1145/2892632
http://dx.doi.org/10.1145/2892632
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dx.doi.org/10.1109/IPDPS.2007.370258
http://doi.acm.org/10.1145/277650.277725
http://dx.doi.org/10.1145/277650.277725
http://dx.doi.org/10.1145/277650.277725
http://www.sidefx.com/docs/houdini/index.html
http://www.sidefx.com/docs/houdini/index.html
http://doi.acm.org/10.1145/1048935.1050206
http://doi.acm.org/10.1145/1048935.1050206
http://dx.doi.org/10.1145/1048935.1050206
http://dx.doi.org/10.1145/1048935.1050206
http://doi.acm.org/10.1145/2676870.2676883
http://doi.acm.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/369028.369103
http://dx.doi.org/10.1145/369028.369103
http://dx.doi.org/10.1145/369028.369103


C. Shah & D. Hyde & H. Qu & P. Levis / Distributing and Load Balancing Sparse Fluid Simulations

G., MATUSIK W., ET AL.: Simit: A language for physical simulation.
ACM Transactions on Graphics (TOG) 35, 2 (2016), 20. 3

[KT06] KLEINBERG J., TARDOS E.: Algorithm design. Pearson Educa-
tion India, 2006. 2, 4

[LCPF12] LENTINE M., CONG M., PATKAR S., FEDKIW R.: Simu-
lating free surface flow with very large time steps. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(2012), Eurographics Association, pp. 107–116. 1, 2

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water and
smoke with an octree data structure. In ACM Transactions on Graphics
(TOG) (2004), vol. 23, ACM, pp. 457–462. 2

[LKK14] LIFFLANDER J., KRISHNAMOORTHY S., KALE L. V.: Opti-
mizing data locality for fork/join programs using constrained work steal-
ing. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (2014), SC ’14,
IEEE Press, pp. 857–868. URL: http://dx.doi.org/10.1109/
SC.2014.75, doi:10.1109/SC.2014.75. 2

[May18] Maya. https://www.autodesk.com/products/
maya/overview, 2018. 2

[MLJ∗13] MUSETH K., LAIT J., JOHANSON J., BUDSBERG J., HEN-
DERSON R., ALDEN M., CUCKA P., HILL D., PEARCE A.: OpenVDB:
an open-source data structure and toolkit for high-resolution volumes. In
Acm siggraph 2013 courses (2013), ACM, p. 19. 1, 2, 3

[MQSL17] MASHAYEKHI O., QU H., SHAH C., LEVIS P.: Execution
Templates: Caching Control Plane Decisions for Strong Scaling of Data
Analytics. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17) (Santa Clara, CA, 2017), USENIX Association, pp. 513–
526. URL: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/mashayekhi. 3

[MSQ∗18] MASHAYEKHI O., SHAH C., QU H., LIM A., LEVIS P.: Au-
tomatically Distributing Eulerian and Hybrid Fluid Simulations in the
Cloud. To appear in ACM Transactions on Graphics (TOG) (2018). 1, 3

[NB11] NIELSEN M. B., BRIDSON R.: Guide shapes for high resolution
naturalistic liquid simulation. ACM Transactions on Graphics (TOG) 30,
4 (2011), 83. 2

[NCZ∗09] NIELSEN M. B., CHRISTENSEN B. B., ZAFAR N. B.,
ROBLE D., MUSETH K.: Guiding of smoke animations through vari-
ational coupling of simulations at different resolutions. In Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2009), ACM, pp. 217–226. 2

[OB98] OLIKER L., BISWAS R.: PLUM: Parallel load balancing for
adaptive unstructured meshes. Journal of Parallel and Distributed Com-
puting 52, 2 (1998), 150–177. 3

[OR94] OU C.-W., RANKA S.: Parallel incremental graph partitioning
using linear programming. In Supercomputing’94., Proceedings (1994),
IEEE, pp. 458–467. 3

[PB94] PILKINGTON J., BADEN S.: Partitioning with spacefilling
curves. CSE Technical Report CS94-349 (1994). 2

[Pfi01] PFISTER G. F.: An introduction to the infiniband architecture.
High Performance Mass Storage and Parallel I/O 42 (2001), 617–632. 8

[PGDS∗14] PEARCE O., GAMBLIN T., DE SUPINSKI B. R., ARSEN-
LIS T., AMATO N. M.: Load balancing n-body simulations with highly
non-uniform density. In Proceedings of the 28th ACM international con-
ference on Supercomputing (2014), ACM, pp. 113–122. 1, 2, 3

[Phe08] PHEATT C.: Intel R© threading building blocks. Journal of Com-
puting Sciences in Colleges 23, 4 (2008), 298–298. 2

[QMSL18] QU H., MASHAYEKHI O., SHAH C., LEVIS P.: Decoupling
the Control Plane from Program Control Flow for Flexibility and Perfor-
mance in Cloud Computing. In To appear in European Conference on
Computer Systems (Eurosys) (2018). 3, 5, 6

[RTWT12] RAVEENDRAN K., THUEREY N., WOJTAN C., TURK G.:
Controlling liquids using meshes. In Proceedings of the 11th ACM SIG-
GRAPH/Eurographics conference on Computer Animation (2012), Eu-
rographics Association, pp. 255–264. 2

[SABS14] SETALURI R., AANJANEYA M., BAUER S., SIFAKIS E.: SP-
Grid: A sparse paged grid structure applied to adaptive smoke simula-
tion. ACM Transactions on Graphics (TOG) 33, 6 (2014), 205. 1, 2

[SKK00] SCHLOEGEL K., KARYPIS G., KUMAR V.: Graph partitioning
for high performance scientific simulations. Army High Performance
Computing Research Center, 2000. 2, 3

[SLT∗15] SLAUGHTER E., LEE W., TREICHLER S., BAUER M., AIKEN
A.: Regent: A high-productivity programming language for HPC with
logical regions. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2015),
SC’15, ACM, p. 81. 3

[Sni98] SNIR M.: MPI–The Complete Reference: The MPI Core, vol. 1.
MIT press, 1998. 1, 2, 3

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques (1999), ACM
Press/Addison-Wesley Publishing Co., pp. 121–128. 2

[TP16] THUEREY N., PFAFF T.: Mantaflow.(2016), 2016. 2

[WMFB11] WOJTAN C., MÜLLER-FISCHER M., BROCHU T.: Liquid
simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011
Courses (2011), ACM, p. 8. 2, 10

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM Trans-
actions on Graphics (TOG) 24, 3 (2005), 965–972. 2, 5

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1109/SC.2014.75
http://dx.doi.org/10.1109/SC.2014.75
http://dx.doi.org/10.1109/SC.2014.75
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mashayekhi
https://www.usenix.org/conference/atc17/technical-sessions/presentation/mashayekhi

