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Fig. 1. Our method enables the simulation of a wide variety of thermomechanical and surface-tension-driven effects. (Top) Letter-shaped candles melt and
interact. (Bottom) A large melting candle; soap spreading on a water surface; water droplets falling and streaking on ramps; partial rebound of a water droplet
impact; wine settling in a glass; a water droplet settling on a hydrophobic surface.

We present a novel Material Point Method (MPM) discretization of surface
tension forces that arise from spatially varying surface energies. These varia-
tions typically arise from surface energy dependence on temperature and/or
concentration. Furthermore, since the surface energy is an interfacial prop-
erty depending on the types of materials on either side of an interface, spatial
variation is required for modeling the contact angle at the triple junction
between a liquid, solid and surrounding air. Our discretization is based on
the surface energy itself, rather than on the associated traction condition
most commonly used for discretization with particle methods. Our energy
based approach automatically captures surface gradients without the explicit
need to resolve them as in traction condition based approaches. We include
an implicit discretization of thermomechanical material coupling with a
novel particle-based enforcement of Robin boundary conditions associated
with convective heating. Lastly, we design a particle resampling approach
needed to achieve perfect conservation of linear and angular momentum
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with Affine-Particle-In-Cell (APIC) [Jiang et al. 2015]. We show that our
approach enables implicit time stepping for complex behaviors like the
Marangoni effect and hydrophobicity/hydrophilicity. We demonstrate the
robustness and utility of our method by simulating materials that exhibit
highly diverse degrees of surface tension and thermomechanical effects,
such as water, wine and wax.

CCS Concepts: • Mathematics of computing → Discretization; Partial
differential equations; Solvers; • Applied computing→ Physics.
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1 INTRODUCTION
Surface tension driven flows like those in milk crowns [Zheng et al.
2015], droplet coalescence [Da et al. 2016; Li et al. 2020; Thürey
et al. 2010; Wojtan et al. 2010; Yang et al. 2016a] and bubble forma-
tion [Da et al. 2015; Huang et al. 2020; Zhu et al. 2014] comprise
some of the most visually compelling fluid motions. Although these
effects are most dominant at small scales, increasing demand for
realism in computer graphics applications requires modern solvers
capable of resolving them. Indeed surface tension effects have been
well examined in the computer graphics and broader computational
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physics literature. We design a novel approach for simulating sur-
face tension driven phenomena that arise from spatial variations in
cohesion and adhesion forces at the interface between two liquids.
This is often called the Marangoni effect [Scriven and Sternling 1960;
Venerus and Simavilla 2015] and perhaps the most famous example
is the tears of wine phenomenon [Thomson 1855]. Other notable
examples of the Marangoni effect include repulsive flows induced
by a soap droplet on a water surface as well as the dynamics of
molten waxes and metals [Farahi et al. 2004; Langbein 2002].

The spatial variation in the surface forces can be characterized in
terms of the potential energy Ψ𝑠 associated with surface tension:

Ψ𝑠 =

∫
Γ
𝑘𝜎 (x)𝑑𝑠 (x) . (1)

Here the surface tension coefficient 𝑘𝜎 is proportionate to the rela-
tive cohesion and adhesion at the interface between the two fluids.
Typically this coefficient is constant across the multi-material in-
terface Γ, however with the Marangoni effect the coefficient varies
with x ∈ Γ. These variations are typically driven by temperature or
concentration gradients and give rise to many subtle, but important
visual behaviors where the variation typically causes fluid to flow
away from low surface energy regions towards high surface energy
regions. To capture the Marangoni effect, most approaches do not
work with the potential energy Ψ𝑠 in Equation (1) but instead base
their discretization on its first variation. This variation results in
the interfacial traction condition

t = 𝑘𝜎𝜅n + ∇𝑆𝑘𝜎 . (2)

Here t is the force per unit area due to surface tension at the interface
Γ, ∇𝑆 is the surface gradient operator at the interface and 𝜅 and n
are the interfacial mean curvature and normal, respectively.

There are many existing techniques in the computational physics
literature that resolve spatial variations in the surface tension. For
particle-basedmethods like Smoothed Particle Hydrodynamics (SPH)
[Monaghan 1992] and Particle-In-Cell (PIC) [Harlow and Welch
1965], most of these approaches are based on the Continuum Sur-
face Force (CSF) model of Brackbill et al. [1992]. Marangoni effects
have not been addressed in computer graphics, other than by Huang
et al. [2020] where it was examined for material flows in soap films.
The original CSF technique of Brackbill et al. [1992] resolves the
mean curvature term in Equation (2), but not the surface gradient
term. Tong and Browne [2014] show that the CSF approach can
be modified to resolve the surface gradient. However, while this
and other existing approaches in the SPH and PIC literature are
capable of resolving the spatial variation, none support implicit time
stepping for the surface tension forces.
We build on the work of Hyde et al. [2020] and show that effi-

cient implicit time stepping with Marangoni effects is achievable
with PIC. As in [Hyde et al. 2020] we observe that similarities with
hyperelasticity suggest that the Material Point Method (MPM) [Sul-
sky et al. 1994] is the appropriate version of PIC. We show that by
building our discretization from the energy in Equation (1) rather
than the more commonly adopted traction condition in Equation (2),
we can naturally compute the first and second variations of the
potential needed when setting up and solving the nonlinear systems
of equations associated with fully implicit temporal discretization.

Interestingly, by basing our discretization on the energy in Equa-
tion (1), we also show that no special treatment is required for the
interfacial spatial gradient operator ∇𝑠 as was done in e.g., [Tong
and Browne 2014]. Furthermore, we show that our approach to
discretizing the Marangoni forces can also be used to impose the
contact angle at liquid/solid/air interfaces [Young 1805]. We show
that this naturally allows for simulation of droplet streaking effects.
While our method is a generalization of the MPM technique in

[Hyde et al. 2020], we also improve on its core functionality. The
Hyde et al. [2020] approach is characterized by the introduction
of additional surface tension particles at each time step which is
designed to represent the liquid interface Γ and its area weighted
boundary normals. These surface tension particles are temporary
and are deleted at the end of the time step to prevent excessive
growth in particle count or macroscopic particle resampling. How-
ever, the surface tension particles are massless to prevent violation
of conservation of particle mass and momentum. We show that
this breaks the perfect conservation of grid linear and angular mo-
mentum when particles introduce grid nodes with no mass that the
surface tension forces will act upon. This is an infrequent occur-
rence, but breaks the otherwise perfect conservation of grid linear
and angular momentum expected with conservative MPM forces.
We design a novel mass and momentum resampling technique that,
with the introduction of two new types of temporary particles, can
restore perfect conservation of grid linear and angular momentum.
We call these additional temporary particles balance particles. We
show that our novel resampling provides improved behavior over
the original approach of Hyde et al. [2020], even in the case of stan-
dard, non-Marangoni surface tension effects. Furthermore, although
other resampling techniques exist for PIC methods [Edwards and
Bridson 2012; Gao et al. 2017b; Yue et al. 2015], we note that ours is
the first to guarantee perfect conservation when using generalized
particle velocities associated with the Affine Particle-in-Cell (APIC)
method [Fu et al. 2017; Jiang et al. 2015, 2016].
Since variations in surface energy are typically based on tem-

perature and/or concentration gradients, we couple our surface
tension coefficients with thermodynamically driven quantities. Fur-
thermore, we resolve solid to liquid and liquid to solid phase changes
as a function of temperature since many Marangoni effects arise
from melting and cooling. Notably, we show that our novel conser-
vative resampling naturally improves discretization of Robin and
Neumann boundary conditions on the interface Γ needed for con-
vection/diffusion of temperature and concentration. In summary,
our primary contributions are:

• A novel implicit MPM discretization of spatially varying sur-
face tension forces.

• A momentum-conserving particle resampling technique for
particles near the surface tension liquid interface.

• An implicit MPM discretization of the convection/diffusion
evolution of temperature/concentration coupled to the sur-
face tension coefficient including a novel particle-based Robin
boundary condition.
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Fig. 2. Splitting. After surface particles (yellow) are created, the mass and
momentum of the interior MPM particles (blue) that are closest to the
surface particles are immediately distributed. Particles in each particle
group are assigned equal mass. MPM particles (black) that are not paired
with any surface particles remain intact for the splitting process. Surface
particles (yellow) and balance particles (red) are assigned the same linear
velocity and affine velocity of the original particle (blue).

2 RELATED WORK
We discuss relevant particle-based techniques for simulating Ma-
rangoni and surface tension effects, contact angle imposition, ther-
modynamic evolution of temperature and/or concentration, as well
as resampling techniques in particle-based methods.

Particle Methods: Particle-based methods are very effective for
computer graphics applications requiring discretization of surface
tension forces. Hyde et al. [2020] provide a thorough discussion of
the state of the art. Our approach utilizes the particle-based MPM
[de Vaucorbeil et al. 2020; Sulsky et al. 1994] PIC technique, largely
due to its natural ability to handle self collision [Fei et al. 2018,
2017; Guo et al. 2018; Jiang et al. 2017], topology change [Wang
et al. 2019; Wolper et al. 2020, 2019], diverse materials [Daviet and
Bertails-Descoubes 2016; Klár et al. 2016; Ram et al. 2015; Schreck
and Wojtan 2020; Stomakhin et al. 2013; Wang et al. 2020c; Yue et al.
2015] as well as implicit time stepping with elasticity [Fang et al.
2019; Fei et al. 2018; Stomakhin et al. 2013; Wang et al. 2020b]. We
additionally use the APIC method [Fu et al. 2017; Jiang et al. 2015,
2016] for its conservation properties and beneficial suppression of
noise. Note that our mass and momentum remapping technique
is designed to work in the context of the APIC techniques where
particles store generalized velocity information.
SPH is very effective for resolving Marangoni effects. The ap-

proaches of Tong and Browne [2014] and Hopp-Hirschler et al.
[2018] are indicative of the state of the art. Most SPH works rely
on the CSF surface tension model of Brackbill et al. [1992], which
transforms surface tension traction into a volumetric force that is
only non-zero along (numerically smeared) material interfaces. CSF
approaches generally derive surface normal and curvature estimates
as gradients of color functions, which can be very sensitive to parti-
cle distribution. Also, CSF forces are not exactly conservative [Hyde
et al. 2020]. SPH can also be used to simulate the convection and
diffusion of temperature/concentration that give rise to the spatial
variation in surface energy in theMarangoni effect. Hu and Eberhard
[2017] simulate Marangoni convection in a melt pool during laser
welding and Russell [2018] does so in laser fusion additive manufac-
turing processes. Both approaches use SPH with [Tong and Browne
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Fig. 3. Merging. The merging process is a modified version of G2P. For the
particles that are not associated with surface particles (black), a regular
G2P is performed. Among each particle group, we calculate each particle’s
contribution to the grid momentum and the generalized affine moments
of their summed momenta about their center of mass. Then, we restore
the mass of the original particle associated with the group prior to the
split and compute its generalized affine inertia tensor from its grid mass
distribution. Using the affine inertia tensor of the original particle, we
compute generalized velocity of the particle after the merging from the
generalized moments of the group.

2014] for discretization of Equation (2). Although SPH is very effec-
tive for resolving Marangoni effects, all existing approaches utilize
explicit treatment of Marangoni forces.

Marangoni effect and contact angle: The Marangoni effect is vi-
sually subtle and has not been resolved with particle-based meth-
ods in computer graphics applications. Perhaps the most visually
compelling example of the Marangoni effect is the tears of wine
phenomenon on the walls of a wine glass [Scriven and Sternling
1960; Venerus and Simavilla 2015]. Tears of wine were simulated
in [Azencot et al. 2015]. However, the authors modeled the fluid
using thin film equations under the lubrication approximation and
did not model surface tension gradients. The fingering instabilities
they observed are stated to occur due to the asymmetric nature
of their initial conditions. The Marangoni effect was resolved by
Huang et al. [2020] recently with thin soap films to generate com-
pelling dynamics of the characteristic rainbow patterns in bubbles.
Relatedly, Ishida et al. [2020] simulated the evolution of soap films
including effects of thin-film turbulence, draining, capillary waves,
and evaporation. Outside of computer graphics, the Marangoni ef-
fect has been recently studied in works like [Dukler et al. 2020],
which models undercompressive shocks in the Marangoni effect,
and [de Langavant et al. 2017], which presents a spatially-adaptive
level set approach for simulating surfactant-driven flows. Also, Nas
and Tryggvason [2003] simulated thermocapillary motion of bub-
bles and drops in flows with finite Marangoni numbers (flows with
significant transport due to Marangoni effects).

Our approach for the Marangoni effect also allows for imposition
of contact angles at air/liquid/solid interfaces. This effect is impor-
tant for visual realism when simulating droplets of water in contact
with solid objects like the ground. Contact angles are influenced
by the hydrophilicity/hydrophobicity of the surface on which these
droplets move or rest [Cassie and Baxter 1944; Johnson Jr. and Dettre
1964]. Wang et al. [2007] solve General Shallow Wave Equations, in-
cluding surface tension boundary conditions and the virtual surface
method of Wang et al. [2005], in order to model contact angles and
hydrophilicity. Zheng et al. [2015] extend the virtual fluid surface
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into the solid boundary and apply additional force to achieve the
desired contact angles. Yang et al. [2016b] use a pairwise force model
[Tartakovsky and Meakin 2005] for handling contact angles in their
SPH treatment of fluid-fluid and solid-fluid interfaces. Clausen et
al. [2013] also consider the relation between surface tension and
contact angles in their Lagrangian finite element approach.

Particle Resampling: Reseeding or resampling particles is a com-
mon concern in various simulation methods; generally speaking,
particles need to be distributed with sufficient density near dynamic
areas of flow or deformation in order to accurately resolve the dy-
namics of the system [Ando et al. 2012; Losasso et al. 2008; Narain
et al. 2010]. Edwards and Bridson [2012] use a non-conservative
random sampling scheme to seed and reseed particles with PIC.
Pauly et al. [2005] resample to preserve detail near cracks/fracture,
but their resampling does not attempt to conserve momentum. Yue
et al. [2015] use Poisson disk sampling to insert new points in low-
density regions and merge points that are too close to one another
with MPM. However, their resampling method is not demonstrated
to be momentum-conserving. A conservative variant of this split-
and-merge approach is applied in [Gao et al. 2017b] where mass and
linear momentum are conserved during particle splitting and merg-
ing. However, angular momentum conservation is not conserved.
Furthermore, these techniques use PIC, not APIC, and neither is
designed to guarantee conservation with the generalized velocity
state in APIC techniques [Fu et al. 2017; Jiang et al. 2015, 2016].

Thermomechanical Effects: Thermodynamic effects in visual sim-
ulation date back to at least Terzopoulos et al. [1991]. More recently,
melting and resolidification for objects like melting candles have
been simulated using various methods, including Lattice Boltzmann
[Wang et al. 2012] and SPH [Lenaerts and Dutré 2009; Paiva et al.
2009], though these results leave room for improved visual and phys-
ical fidelity. FLIP methods have also been used for thermodynamic
problems, such as [Gao et al. 2017a], which adapts the latent heat
model from [Stomakhin et al. 2014]. Condensation and evaporation
of water were considered in several works based on SPH [Hochstet-
ter and Kolb 2017; Zhang et al. 2017]. SPH was also applied to the
problem of simulating boiling bubbles in [Gu and Yang 2016], which
models heat conduction, convection and mass transfer. Recently,
particle-based thermodynamics models were incorporated into an
SPH snow solver [Gissler et al. 2020a], with temperature-dependent
material properties such as the Young’s modulus. In another vein,
Pirk et al. [2017] used position-based dynamics and Cosserat physics
to simulate combustion of tree branches, including models for mois-
ture and charring. Yang et al. [2017] used the Cahn-Hilliard and
Allen-Cahn equations to evolve a continuous phase variable for
materials treated with their phase-field method. Maeshima et al.
[2020] considered particle-scale explicit MPM modeling for addi-
tive manufacturing (selective laser sintering) that included a latent
heat model for phase transition. For a detailed review of thermody-
namical effects in graphics, we refer the reader to [Stomakhin et al.
2014].

Surface Tension: Many methods for simulating non-Marangoni
surface tension effects have been developed for computer graph-
ics applications. We refer the reader to [Hyde et al. 2020] for a

detailed survey. More recently, Chen et al. [2020] incorporated sub-
cell-accurate surface tension forces in an Eulerian fluid framework
based on integrating the mean curvature flow of the liquid interface
(following Sussman and Ohta [2009]). With an eye towards resolv-
ing codimensional flow features, such as thin sheets and filaments,
Batty et al. [2012] utilized an energy based approach for surface
tension. Wang et al. [2020a] and Zhu et al. [2014] also simulated
surface tension forces with codimensional features using moving-
least-squares particles and simplicial complexes, respectively. Most
related to the present work, Hyde et al. [2020] proposed an implicit
material point method for simulating liquids with large surface
energy, such as liquid metals. Their surface tension formulation
follows [Adamson and Gast 1967; Brackbill et al. 1992; Buscaglia
and Ausas 2011] and incorporates a potential energy associated with
surface tension into the MPM framework. Material boundaries are
sampled using massless MPM particles.

3 GOVERNING EQUATIONS
We first define the governing equations for thermomechanically
driven phase change of hyperelastic solids and liquids with variable
surface energy. As in [Hyde et al. 2020] we also cover the updated
Lagrangian kinematics. Lastly, we provide the variational form of
the governing equations for use in MPM discretization. We note
that throughout the document Greek subscripts are assumed to run
from 0, 1, . . . , 𝑑 − 1 for the dimension 𝑑 = 2, 3 of the problem. Re-
peated Greek subscripts imply summation, while sums are explicitly
indicated for Latin subscripts. Also, Latin subscripts in bold are used
for multi-indices.

3.1 Kinematics
We adopt the continuum assumption [Gonzalez and Stuart 2008]
and updated Lagrangian kinematics [Belytschko et al. 2013] used by
Hyde et al. [2020]. At time 𝑡 we associate our material with subsets
Ω𝑡 ⊂ R𝑑 , 𝑑 = 2, 3. We use Ω0 to denote the initial configuration of
material with X ∈ Ω0 used to denote particles of material at time
𝑡 = 0. A flow map 𝝓 : Ω0 × [0,𝑇 ] → R𝑑 defines the material motion
of particles X ∈ Ω0 to their time 𝑡 locations x ∈ Ω𝑡 as 𝝓 (X, 𝑡) = x.
The Lagrangian velocity is defined by differentiating the flow map
in time V(X, 𝑡) = 𝜕𝝓

𝜕𝑡 (X, 𝑡).

3.1.1 Eulerian and Updated Lagrangian Representations. The La-
grangian velocity can be difficult to work with in practice since
real world observations of material are made in Ω𝑡 not Ω0. The
Eulerian velocity v : Ω𝑡 → R𝑑 is what we observe in practice.
The Eulerian velocity is defined in terms of the inverse flow map
𝝓−1 (·, 𝑡) : Ω𝑡 → Ω0 as v(x, 𝑡) = V(𝝓−1 (x, 𝑡), 𝑡) where 𝝓−1 (x, 𝑡) =
X. In general, we can use the flow map and its inverse to pull-
back quantities defined over Ω𝑡 and pushforward quantities de-
fined over Ω0, respectively. For example, given 𝐺 : Ω0 → R, its
pushforward 𝑔 : Ω𝑡 → R is defined as 𝑔(x) = 𝐺 (𝝓−1 (x, 𝑡)). This
process is related to the material derivative operator 𝐷

𝐷𝑡
where

𝐷𝑔

𝐷𝑡
(x, 𝑡) = 𝜕𝐺

𝜕𝑡 (𝝓
−1 (x, 𝑡)) = 𝜕𝑔

𝜕𝑡 (x, 𝑡) +
∑𝑑−1
𝛼=0

𝜕𝑔
𝜕𝑥𝛼

(x, 𝑡)𝑣𝛼 (x, 𝑡) (see
e.g., [Gonzalez and Stuart 2008] for more detail).

In the updated Lagrangian formalism [Belytschko et al. 2013] we
write quantities over an intermediate configuration of material Ω𝑠
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with 0 ≤ 𝑠 < 𝑡 . For example, we can define 𝑔(·, 𝑠) : Ω𝑠 → R as
𝑔(x̃, 𝑠) = 𝐺 (𝝓−1 (x̃, 𝑠)) for x̃ ∈ Ω𝑠 . As shown in [Hyde et al. 2020],
this is particularly useful when discretizing momentum balance
using its variational form. The key observation is that the updated
Lagrangian velocity can be written as v̂(x̃, 𝑠, 𝑡) = V(𝝓−1 (x̃, 𝑠), 𝑡) =
v(�̂� (x̃, 𝑠, 𝑡), 𝑡) with �̂� (x̃, 𝑠, 𝑡) = 𝝓 (𝝓−1 (x̃, 𝑠), 𝑡) for x̃ ∈ Ω𝑠 . Intuitively,
�̂� (·, 𝑠, 𝑡) : Ω𝑠 → Ω𝑡 is the mapping from the time 𝑠 configuration to
the time 𝑡 configuration induced by the flow map. This has a simple
relation to the material derivative as 𝜕v̂𝜕𝑡 (x̃, 𝑠, 𝑡) =

𝜕V
𝜕𝑡 (𝝓

−1 (x̃, 𝑠), 𝑡) =
𝐷v
𝐷𝑡

(�̂� (x̃, 𝑠, 𝑡), 𝑡). As in [Hyde et al. 2020] we will generally use upper
case for Lagrangian quantities, lower case for Eulerian quantities
and hat superscripts for updated Lagrangian quantities.

3.1.2 Deformation Gradient. The deformation gradient F =
𝜕𝝓
𝜕X is

defined by differentiating the flow map in space and can be used to
quantify the amount of deformation local to a material point. We
use 𝐽 = det(F) to denote the deformation gradient determinant. 𝐽
represents the amount of volumetric dilation at a material point.
Furthermore, it is used when changing variables with integration.
We also make use of similar notation for the �̂� mapping from Ω𝑠 to
Ω𝑡 , i.e. F̂ =

𝜕�̂�
𝜕x̃ , 𝐽 = det

(
F̂
)
.

3.2 Conservation of Mass and Momentum
Our governing equations primarily consist of conservation of mass
and momentum which can be expressed as

𝜌
𝐷v
𝐷𝑡

= ∇ · 𝝈 + 𝜌g, 𝐷𝜌
𝐷𝑡

= −𝜌∇ · v, x ∈ Ω𝑡 (3)

where 𝜌 is the Eulerian mass density, v is the Eulerian material
velocity, 𝝈 is the Cauchy stress and g is gravitational acceleration.
Boundary conditions for these equations are associated with a free
surface for solid material, surface tension for liquids and/or pre-
scribed velocity conditions. We use 𝜕Ω𝑡

𝑁
to denote the portion of

the time 𝑡 boundary subject to free surface or surface tension condi-
tions and 𝜕Ω𝑡

𝐷
to denote the portion of the boundary with Dirichlet

velocity boundary conditions. Free surface conditions and surface
tension boundary conditions are expressed as

𝝈n = t, x ∈ 𝜕Ω𝑡𝑁 (4)

where t = 0 for free surface conditions and t = 𝑘𝜎𝜅n + ∇𝑆𝑘𝜎
from Equation (2) for surface tension conditions. Velocity boundary
conditions may be written as

v · n = 𝑣𝑛bc, x ∈ 𝜕Ω𝑡𝐷 . (5)

3.2.1 Constitutive Models. Each material point is either a solid or
liquid depending on the thermomechanical evolution. For liquids,
the Cauchy stress 𝝈 is defined in terms of pressure and viscous
stress:

𝝈 = −𝑝I + 𝜇
(
𝜕v
𝜕x

+ 𝜕v
𝜕x

𝑇
)
, 𝑝 = − 𝜕𝜓

𝑝

𝜕𝐽
,

with𝜓𝑝 (𝐽 ) = 𝜆𝑙

2 (𝐽 − 1)2. Here 𝜆𝑙 is the bulk modulus of the liquid
and 𝜇𝑙 is its viscosity. For solids, the Cauchy stress is defined in
terms of a hyperelastic potential energy density𝜓𝑠 as

𝝈 =
1
𝑗

𝜕𝜓𝑠

𝜕F
f𝑇

where f (x, 𝑡) = F(𝝓−1 (x, 𝑡), 𝑡) and 𝑗 (x, 𝑡) = 𝐽 (𝝓−1 (x, 𝑡), 𝑡) are the
Eulerian deformation gradient and its determinant, respectively. We
use the fixed-corotated constitutive model from [Stomakhin et al.
2012] for𝜓ℎ . This model is defined in terms of the polar SVD [Irving
et al. 2004] of the deformation gradient F = U𝚺V𝑇 with

𝜓ℎ (F) = 𝜇ℎ
𝑑−1∑︁
𝛼=0

(𝜎𝛼 − 1)2 + 𝜆
ℎ

2
(𝐽 − 1)2,

where the 𝜎𝛼 are the diagonal entries of 𝚺 and 𝜇ℎ, 𝜆ℎ are the hyper-
elastic Lamé coefficients.

Fig. 4. Various 𝑘𝜎 values (0.05, 0.1, 0.2, 0.4N/m) are simulated in the case
of a melting candle. Frame 1202 is shown.

3.3 Conservation of energy
We assume the internal energy of our materials consists of potential
energy associated with surface tension, liquid pressure and hypere-
lasticity and thermal energy associated with material temperature.
Conservation of energy together with thermodynamic consider-
ations requires convection/diffusion of the material temperature
[Gonzalez and Stuart 2008] subject to Robin boundary conditions
associated with convective heating by ambient material:

𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
= 𝐾∇2𝑇 + 𝐻

𝐾∇𝑇 · n = −ℎ(𝑇 −𝑇 ) + 𝑏.
(6)

Here 𝑐𝑝 is specific heat capacity, 𝑇 is temperature, 𝐾 is thermal
conductivity,𝐻 is a source function,𝑇 is the temperature of ambient
material, and n is the surface boundary normal. ℎ controls the rate
of convective heating to the ambient temperature, and 𝑏 represents
the rate of boundary heating independent of the ambient material
temperature 𝑇 .
The total potential energy Ψ in our material is as in [Hyde et al.

2020], however we include the spatial variation of the surface en-
ergy density in Equation (1) and the hyperelastic potential for solid
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regions:

Ψ(𝝓 (·, 𝑡)) = Ψ𝜎 (𝝓 (·, 𝑡)) + Ψ𝑙 (𝝓 (·, 𝑡)) + Ψℎ (𝝓 (·, 𝑡)) + Ψ𝑔 (𝝓 (·, 𝑡)) .

Here Ψ𝜎 is the potential from surface tension, Ψ𝑙 is the potential
from liquid pressure, Ψℎ is the potential from solid hyperelasticity,
and Ψ𝑔 is the potential from gravity. As in typical MPM discretiza-
tions, our approach is designed in terms of these energies:

Ψ𝜎 (𝝓 (·, 𝑡)) =
∫
𝜕Ω𝑡

𝑘𝜎 (x, 𝑡)𝑑𝑠 (x), Ψ𝑔 (𝝓 (·, 𝑡) =
∫
Ω0
𝑅g · 𝝓 𝐽𝑑X,

Ψ𝑙 (𝝓 (·, 𝑡)) =
∫
Ω0

𝜆𝑙

2
(𝐽 − 1)2 𝑑X, Ψℎ (𝝓 (·, 𝑡)) =

∫
Ω0
𝜓ℎ (F)𝑑X.

Here 𝑅 is the pullback (see Section 3.1) of the mass density 𝜌 . Note
that in the expression for the surface tension potential it is useful
to change variables using the updated Lagrangian view as in [Hyde
et al. 2020]:

Ψ𝜎 (𝝓 ( ·, 𝑡 )) =
∫
𝜕Ω𝑡

𝑘𝜎 (x, 𝑡 )𝑑𝑠 (x) =
∫
𝜕Ω𝑠

𝑘𝜎 (�̂� (x̃, 𝑠, 𝑡 ), 𝑡 ) | 𝐽 F̂−𝑇 ñ |𝑑𝑠 (x̃) .
(7)

Here ñ is the outward unit normal at a point on the boundary of
Ω𝑠 and the expression 𝑑𝑠 (x) = |𝐽 F̂−𝑇 ñ|𝑑𝑠 (x̃) arises by a change of
variables from an integral over 𝜕Ω𝑡 to one over 𝜕Ω𝑠 . Notably, the
spatial variation in 𝑘𝜎 is a natural extension of the Hyde et al. [2020]
approach.

3.4 Variational Form of Momentum Balance
The strong form of momentum balance in Equation (3), together
with the traction (Equation (4)) and Dirichlet velocity boundary
conditions (Equation (5)), is equivalent to a variational form that is
useful when discretizing our governing equations using MPM. To
derive the variational form, we take the dot product of Equation (3)
with an arbitrary function w : Ω𝑡 → R𝑑 satisfying w · n = 0 for
x ∈ 𝜕Ω𝑡

𝐷
and integrate over the domain Ω𝑡 , applying integration

by parts where appropriate. Requiring that the Dirichlet velocity
conditions in Equation (4) hold together with the following inte-
gral equations for all functions w is equivalent to the strong form,
assuming sufficient solution regularity:∫

Ω𝑡
𝜌
𝐷𝑣𝛼

𝐷𝑡
𝑤𝛼𝑑x = − 𝑑

𝑑𝜖
𝑃𝐸 (0;w) − 𝜇𝑙

∫
Ω𝑡
𝜖𝑣
𝛼𝛽
𝜖𝑤
𝛼𝛽
𝑑x. (8)

Here 𝜖𝑤 = 1
2

(
𝜕𝑤𝛼

𝜕𝑥𝛽
+ 𝜕𝑤𝛽

𝜕𝑥𝛼

)
and 𝜖𝑣 = 1

2

(
𝜕𝑣𝛼
𝜕𝑥𝛽

+ 𝜕𝑣𝛽
𝜕𝑥𝛼

)
and

PE(𝜖 ;w) = Ψ(𝝓 (·, 𝑡) + 𝜖W).
HereW is the pullback of w (see Section 3.1). Note that this nota-
tion is rather subtle for the surface tension potential energy. For
clarification,

Ψ𝜎 (𝝓 (·, 𝑡) + 𝜖W) =
∫
𝜕Ω𝑠

𝑘𝜎 (�̂� + 𝜖ŵ) |𝐽𝜖,ŵF̂−𝑇𝜖,ŵ ñ|𝑑𝑠 (x̃),

where ŵ(x̃, 𝑠, 𝑡) = w(�̂� (x̃, 𝑠, 𝑡)) is the updated Lagrangian pullback
of w, F̂𝜖,ŵ =

𝜕�̂�+𝜖ŵ
𝜕x̃ is the deformation gradient of the mapping �̂� +

𝜖ŵ and 𝐽𝜖,ŵ = det
(
F̂𝜖,ŵ

)
is its determinant. Lastly, for discretization

purposes, in practice we change variables in the viscosity term

𝜇𝑙
∫
Ω𝑡
𝜖𝑣
𝛼𝛽
𝜖𝑤
𝛼𝛽
𝑑x = 𝜇𝑙

∫
Ω𝑠
𝜖𝑣
𝛼𝛽
𝜖𝑤
𝛼𝛽
𝐽𝑑x̃. (9)

We can similarly derive a variational form of the temperature evo-
lution in Equation (6) by requiring∫

Ω𝑡
𝜌𝑐𝑝

𝐷𝑇

𝐷𝑡
𝑞𝑑x = −

∫
𝜕Ω𝑡

𝑞ℎ𝑇𝑑S(x) +
∫
𝜕Ω𝑡

𝑞
(
ℎ𝑇 + 𝑏

)
𝑑S(x)

+
∫
Ω𝑡
𝐻𝑞𝑑x −

∫
Ω𝑡

∇𝑞 · 𝐾∇𝑇𝑑x
(10)

for all functions 𝑞 : Ω𝑡 → R.

3.5 Thermomechanical Material Dependence and Phase
Change

The thermomechanical material dependence is modeled by allowing
the surface tension coefficient 𝑘𝜎 , the liquid bulk modulus 𝜆𝑙 , the
liquid viscosity 𝜇𝑙 and the hyperelastic Lamé coefficients 𝜇ℎ, 𝜆ℎ to
vary with temperature. When 𝑇 exceeds a user-specified melting
point𝑇melt, the solid phase is changed to liquid and the deformation
gradient determinant 𝐽 is set to 1. Similarly, if the liquid temperature
drops below 𝑇melt, the phase is updated to be hyperelastic solid,
and the deformation gradient F is set to the identity matrix. In
practice, resetting the deformation gradient and its determinant
helps to prevent nonphysical popping when the material changes
from solid to liquid and vice versa. We remark that incorporating a
more sophisticated phase change model, such as a latent heat buffer,
is potentially useful in future work [Stomakhin et al. 2014].

3.6 Contact Angle
The contact angle between a liquid, a solid boundary and the ambient
air is governed by the Young equation [Young 1805]. This expression
relates the resting angle 𝜃 (measured through the liquid) of a liquid
in contact with a solid surface to the surface tension coefficients
between the liquid, solid and air phases:

𝑘𝜎
𝑆𝐺

= 𝑘𝜎
𝑆𝐿

+ 𝑘𝜎
𝐿𝐺

cos(𝜃 ). (11)

The surface tension coefficients are between the solid and gas phases,
solid and liquid phases, and liquid and gas phases, respectively. As
in [Clausen et al. 2013], we assume 𝑘𝜎

𝑆𝐺
is negligible since we are

using a free surface assumption and do not explicitly model the air.
Under this assumption, the solid-liquid contact angle is determined
by the surface tension ratio −𝑘𝜎

𝑆𝐿
/𝑘𝜎
𝐿𝐺

. We note that, while one
would expect surface tension coefficients/energies to be positive,
this ratio can be negative under the assumption of zero solid-gas
surface tension. Furthermore, we note that utilizing this expression
requires piecewise constant surface tension coefficients where the
variation along the liquid boundary is based on which portion is
in contact with the air and which is in contact with the solid. The
distinct surface tension coefficients on different interfaces provide
controllability of the spreading behavior of the liquid on the solid
surface.

4 DISCRETIZATION
As in [Hyde et al. 2020], we use MPM [Sulsky et al. 1994] and APIC
[Jiang et al. 2015] to discretize the governing equations. The domain
Ω𝑡

𝑛
at time 𝑡𝑛 is sampled using material points x𝑛𝑝 . These points

also store approximations of the deformation gradient determinant
𝐽𝑛𝑝 , constant velocity v𝑛𝑝 , affine velocity A𝑛𝑝 , volume 𝑉 0

𝑝 , mass𝑚𝑝 =
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𝜌 (x0
𝑝 , 𝑡

0)𝑉 0
𝑝 , temperature 𝑇𝑛𝑝 , and temperature gradient ∇𝑇𝑛𝑝 . We

also make use of a uniform background grid with spacing Δ𝑥 when
discretizing momentum updates. To advance our state to time 𝑡𝑛+1,
we use the following steps:

(1) Resample particle boundary for surface tension and Robin
boundary temperature conditions.

(2) P2G: Conservative transfer of momentum and temperature
from particles to grid.

(3) Update of grid momentum and temperature.
(4) G2P: Conservative transfer of momentum and temperature

from grid to particles.

4.1 Conservative Surface Particle Resampling

Particle Group

Πp

bnr xn
p

snr

Fig. 5. A portion of an MPM fluid in the simulation domain. Surface par-
ticles (yellow) are sampled on faces of the zero isocontour of the level set
formed by unioning spherical level sets around each MPM particle. Each
surface particle generates an associated balance particle (red) such that the
closest MPM particle (blue) to a boundary particle lies on the midpoint of a
line segment between the surface particle and balance particle. A single blue
particle at 𝒙𝑝 may be paired with multiple surface particles and balance
particles, and they are considered to be in a particle group 𝚷𝑝 . MPM parti-
cles that are not associated with any surface tension particles are marked
as black.

The integrals associated with the surface tension energy in Equa-
tion (7) and the Robin temperature condition in Equation (10) are
done over the boundary of the domain. We follow Hyde et al. [2020]
and introduce special particles to cover the boundary in order to
serve as quadrature points for these integrals. As in [Hyde et al.
2020] these particles are temporary and are removed at the end
of the time step. However, while Hyde et al. [2020] used massless
surface particles, we design a novel conservative mass and momen-
tum resampling for surface particles. Massless particles easily allow
for momentum conserving transfers from particles to the grid and
vice versa; however, they can lead to loss of conservation in the
grid momentum update step. This occurs when there is a grid cell
containing only massless particles. In this case, there are grid nodes
with no mass that receive surface tension forces. These force com-
ponents are then effectively thrown out since only grid nodes with
mass will affect the end of time step particle momentum state (see
Section 6.1).
We resolve this issue by assigning mass to each of the surface

particles. However, to conserve total mass, some mass must be
subtracted from interior MPM particles. Furthermore, changing the
mass of existing particles also changes their momentum, which

may lead to violation of conservation. In order to conserve mass,
linear momentum and angular momentum, we introduce a new
particle for each surface particle. We call these balance particles,
and like surface particles they are temporary and will be removed
at the end of the time step. We show that the introduction of these
balance particles naturally allows for conservation both when they
are created at the beginning of the time step and when they are
removed at the end of the time step.

4.1.1 Surface Particle Sampling. We first introduce surface particles
using the approach in [Hyde et al. 2020]. A level set enclosing the
interior MPM particles is defined as the union of spherical level sets
defined around each interior MPM particle. Unlike Hyde et al. [2020],
we do not smooth or shift the unioned level set. We compute the
zero isocontour of the level set using marching cubes [Chernyaev
1995] and randomly sample surface particles along this explicit
representation. In [Hyde et al. 2020], three-dimensional boundaries
were sampled using a number of sample points proportional to
the surface area of each triangle. Sample points were computed
using uniform random barycentric weights, which leads to a non-
uniform distribution of points in each triangle. Instead, we employ
a strategy of per-triangle Monte Carlo sampling using a robust
Poisson distribution, as described in Figure 1 of [Corsini et al. 2012]
(not their blue noise algorithm); uniform triangle sample points are
generated as in [Osada et al. 2002]. We found that this gave better
coverage of the boundary without generating particles in a biased,
mesh-dependent fashion (see Figure 6). We note that radii for the
particle level sets are taken to be 0.73Δ𝑥 (slightly larger than

√
2

2 Δ𝑥 )

in 2D and 0.867Δ𝑥 (slightly larger than
√

3
2 Δ𝑥) in 3D, where Δ𝑥 is

the MPM grid spacing. This guarantees that even a single particle
in isolation will always generate a level set zero isocontour that
intersects the grid and will therefore always generate boundary
sample points. Note also that as in [Hyde et al. 2020], we use the
explicit marching cubes mesh of the zero isocontour to easily and
accurately generate samples of area weighted normals 𝑑A𝑛𝑟 where∑ |𝑑A𝑛𝑟 | ≈

∫
𝜕Ω𝑡𝑛 𝑑s are chosen with direction from the triangle

normal and magnitude based on the number of samples in a given
triangle and the triangle area.

4.1.2 Balance Particle Sampling. For each surface particle s𝑛𝑟 , we
additionally generate a balance particle b𝑛𝑟 . First, we compute the
closest interior MPM particle for each surface particle x𝑛

𝑝 (s𝑛𝑟 )
. Then

we introduce the corresponding balance particle as

b𝑛𝑟 = s𝑛𝑟 + 2
(
x𝑛
𝑝 (s𝑛𝑟 ) − s𝑛𝑟

)
. (12)

4.1.3 Mass and Momentum Splitting. After introducing the surface
s𝑛𝑟 and balance b𝑛𝑟 particles, we assign them mass and momentum
(see Figure 2). To achieve this in a conservative manner, we first
partition the surface particles into particle groups Π𝑝 defined as the
set of surface particle indices 𝑟 such that x𝑛𝑝 is the closest interior
MPM particle to s𝑛𝑟 (see Figure 5). We assign the mass𝑚𝑝 of the
particle x𝑛𝑝 to the collection of x𝑛𝑝 , s𝑛𝑟 and b𝑛𝑟 for 𝑟 ∈ Π𝑝 uniformly
by defining a mass of �̃�𝑝 =

𝑚𝑝

2 |Π𝑝 |+1 to each surface and balance
point as well as to x𝑛𝑝 . Here |Π𝑝 | is the number of elements in the set.
This operation is effectively a split of the original particle x𝑛𝑝 with
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Fig. 6. Isocontour and sampled boundary particles for an ellipsoid. (Left)
Using the method of Hyde et al. [2020]. Note how low-quality triangles are
undersampled and how sample points often clump near triangle centers.
(Right) The present method, which does not suffer from similar issues.

mass𝑚𝑝 into a new collection of particles x𝑛𝑝 , s𝑛𝑟 , b𝑛𝑟 , 𝑟 ∈ Π𝑝 with
masses �̃�𝑝 . This split trivially conserves the mass. Importantly, by
construction of the balance particles (Equation (12)) we ensure that
the center of mass of the collection is equal to the original particle
x𝑛𝑝 :

1
𝑚𝑝

©«�̃�𝑝x𝑛𝑝 +
∑︁
𝑟 ∈Π𝑝

�̃�𝑝s𝑛𝑟 + �̃�𝑝b𝑛𝑟
ª®¬ = x𝑛𝑝 . (13)

With this particle distribution, conservation of linear and angular
momentum can be achieved by simply assigning each new particle
in the collection the velocity v𝑛𝑝 and affine velocityA𝑛𝑝 of the original
particle x𝑛𝑝 . We note that the conservation of the center of mass
(Equation (13)) is essential for this simple constant velocity split to
conserve linear and angular momentum (see [Chen et al. 2021]).

4.2 Transfer: P2G
After the addition of the surface and balance particles, we transfer
mass and momentum to the grid in the standard APIC [Jiang et al.
2015] way using their conservatively remapped mass and velocity
state

𝑚𝑛i =
∑︁
𝑝

�̃�𝑝
©«𝑁i (x𝑛𝑝 ) +

∑︁
𝑟 ∈Π𝑝

𝑁i (s𝑛𝑟 ) + 𝑁i (b𝑛𝑟 )
ª®¬ ,

𝑚𝑛i v
𝑛
i =

∑︁
𝑝

�̃�𝑝𝑁i (x𝑛𝑝 )
(
v𝑛𝑝 + A𝑛𝑝 (xi − x𝑛𝑝 )

)
+

∑︁
𝑝

�̃�𝑝

∑︁
𝑟 ∈Π𝑝

𝑁i (s𝑛𝑟 )
(
v𝑛𝑝 + A𝑛𝑝 (xi − s𝑛𝑟 )

)
+

∑︁
𝑝

�̃�𝑝

∑︁
𝑟 ∈Π𝑝

𝑁i (b𝑛𝑟 )
(
v𝑛𝑝 + A𝑛𝑝 (xi − b𝑛𝑟 )

)
.

Here Ni (x) = N(x − xi) are quadratic B-splines defined over the
uniform grid with xi living at cell centers [Stomakhin et al. 2013].

Note that for interior MPM particles far enough from the boundary
that Π𝑝 = ∅. This reduces to the standard APIC [Jiang et al. 2015]
splat since �̃�𝑝 =𝑚𝑛𝑝 . We also transfer temperature from particles
to grid using

𝑇𝑛i𝛼 =
∑︁
𝑝

𝑚𝑝𝑁i (x𝑛𝑝 ) (𝑇𝑛𝑝 + (𝑥i𝛼 − 𝑥𝑛𝑝𝛼 )∇𝑇𝑛𝑝𝛼 ).

Note that for the temperature transfer, we only use surface particles
to properly apply the thermal boundary conditions, and we do not
use these particles to transfer mass-weighted temperature to the
grid.

4.3 Grid Momentum and Temperature Update
We discretize the governing equations in the standard MPMmanner
by using the particles as quadrature points in the variational forms.
The interior MPM particles x𝑛𝑝 are used for volume integrals and
the surface particles s𝑛𝑟 are used for surface integrals. By choosing
𝑠 = 𝑡𝑛 , 𝑡 = 𝑡𝑛+1 and by using grid discretized versions of ŵ(x̃) =∑

jwj𝑁j (x̃), v̂(x̃, 𝑡𝑛, 𝑡𝑛+1) =
∑
i v̂𝑛+1

i 𝑁i (x̃), 𝑞(x̃) =
∑
j 𝑞j𝑁j (x̃) and

𝑇 (x̃) = ∑
i𝑇i𝑁i (x̃).

4.3.1 Momentum Update. As in [Hyde et al. 2020], the grid momen-
tum update is derived from Equation (8):

𝑚𝑛i
v̂𝑛+1
i − v𝑛i
Δ𝑡

= fi (x + Δ𝑡 q̂) +𝑚𝑛i g, (14)

fi (x̂) = − 𝜕𝑒

𝜕x̂i
(x̂) − 𝜇𝑙

∑︁
𝑝

𝝐𝑣 (x̂; x𝑛𝑝 )
(
𝜕𝑁i
𝜕x

(x𝑛𝑝 )
)𝑇
𝑉𝑛𝑝 , (15)

where fi is the force on grid node i from potential energy and viscos-

ity, 𝜖𝑣 (x̂; x𝑛𝑝 ) = 1
2

(∑
j x̂j

𝜕𝑁j
𝜕x (x𝑛𝑝 ) +

(
x̂j
𝜕𝑁j
𝜕x (x𝑛𝑝 )

)𝑇 )
is the strain rate

at x𝑛𝑝 , g is gravity, and q̂ is either 0 (for explicit time integration) or
v̂𝑛+1 (for backward Euler time integration). x represents the vector
of all unmoved grid node positions xi. We use 𝑒 (y) to denote the
discrete potential energy Ψ where MPM and surface particles are
used as quadrature points:

𝑒 (y) =
∑︁
𝑝

(
𝜓ℎ (F𝑝 (ŷ)) +

𝜆𝑙

2
(𝐽𝑝 (ŷ) − 1)2

)
𝑉 0
𝑝

+
∑︁
𝑟

𝑘𝜎 (s𝑛𝑟 ) |𝐽𝑟 (ŷ)F̂−𝑇𝑟 (ŷ)𝑑A𝑛𝑟 |,

where, as in [Stomakhin et al. 2013], F𝑝 (ŷ) =
∑
i yi

𝜕𝑁i
𝜕x (x𝑛𝑝 )F𝑛𝑝 and as

in [Hyde et al. 2020], 𝐽𝑝 (ŷ) =
(
1 − 𝑑 + 𝑦𝛼 𝜕𝑁i

𝜕𝑥𝛼
(x𝑛𝑝 )

)
𝐽𝑛𝑝 and F̂𝑝 (y) =∑

i yi
𝜕𝑁i
𝜕x (x𝑛𝑝 ). With these conventions, the 𝛼 component of the

energy-based force on grid node i is of the form

− 𝜕𝑒

𝜕𝑥i𝛼
(y) = −

∑︁
𝑝

𝜕𝜓ℎ

𝜕𝐹𝛼𝛿
(F𝑝 (ŷ))𝐹𝑛𝑝𝛾𝛿

𝜕𝑁i

𝜕𝑥𝛾
(x𝑛𝑝 )𝑉 0

𝑝

−
∑︁
𝑝

𝜆𝑙 ( 𝐽𝑝 (y) − 1) 𝜕𝑁i

𝜕𝑥𝛼
(x𝑛𝑝 ) 𝐽 𝑛𝑝 𝑉 0

𝑝

−
∑︁
𝑟

𝑘𝜎 (s𝑛𝑟 )
𝜕 | det(F̂𝑟 ) F̂−𝑇𝑟 𝑑A𝑛

𝑟 |
𝜕𝐹𝛼𝛿

(F̂𝑟 (ŷ))
𝜕𝑁i

𝜕𝑥𝛿
(x𝑛𝑝 ) .

(16)

We note that the viscous contribution to the force in Equation (15)
is the same as in [Ram et al. 2015]. We would expect 𝑉𝑛+1

𝑝 in this
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term when deriving from Equation (9), however we approximate
it as 𝑉𝑛𝑝 . This is advantageous since it makes the term linear; and
since 𝐽𝑝 (x̂) ≈ 1 from the liquid pressure and hyperelastic stress, it is
not a poor approximation. Lastly, we note that the surface tension
coefficient 𝑘𝜎 (s𝑛𝑟 ) will typically get its spatial dependence from
composition with a function of temperature 𝑘𝜎 (s𝑛𝑟 ) = �̃�𝜎 (𝑇 (s𝑛𝑟 )) =
�̃�𝜎 (T𝑠,𝑛𝑟 ).

In the case of implicit time stepping with backward Euler (q̂ =

v̂𝑛+1), we use Newton’s method to solve the nonlinear systems of
equations. This requires linearization of the grid forces associated
with potential energy in Equation (16). We refer the reader to [Stom-
akhin et al. 2013] and [Hyde et al. 2020] for the expressions for
these terms, as well as the definiteness fix used for surface tension
contributions.

4.3.2 Temperature Update. We discretize Equation (10) in a simi-
lar manner which results in the following equations for the grid
temperatures 𝑇i:

𝑐𝑝𝑚i
𝑇𝑛+1
i −𝑇𝑛i

Δ𝑡
= −

∑︁
𝑝

𝐾
𝜕𝑁i
𝜕𝑥𝛼

(x𝑛𝑝 )𝑇𝑛+1
j

𝜕𝑁j

𝜕𝑥𝛼
(x𝑛𝑝 )𝑉𝑛𝑝

−
∑︁
𝑟

ℎ𝑁i (s𝑛𝑟 )𝑇𝑛+1
j 𝑁j (s𝑛𝑟 ) |𝑑A𝑛𝑟 |

+
∑︁
𝑟

𝑁i (s𝑛𝑟 )
[
ℎ𝑇 (s𝑛𝑟 ) + 𝑏 (s𝑛𝑟 )

]
|𝑑A𝑛𝑟 |

+
∑︁
𝑝

ℎ𝑁i (x𝑛𝑝 )𝐻 (x𝑛𝑝 )𝑉𝑛𝑝 .

Note that by using the surface particles s𝑛𝑟 as quadrature points
in the variational form, the Robin boundary condition can be dis-
cretized naturally with minimal modification to the Laplacian and
time derivative terms. Also, note that the inclusion of this term
modifies both the matrix and the right side in the linear system for
𝑇𝑛+1
i . We found that performing constant extrapolation of interior
particle temperatures to the surface particles provided better initial
guesses for the linear solver.

5 TRANSFER: G2P
Once grid momentum and temperature have been updated, we
transfer velocity and temperature back to the particles. For interior
MPM particles with no associated surface or balance particles (Π𝑝 =

∅), we transfer velocity, affine velocity and temperature from the
grid to particles in the standard APIC [Jiang et al. 2015] way:

v𝑛+1
𝑝 =

∑︁
i
𝑁i (x𝑛𝑝 )v̂𝑛+1

i , A𝑛+1
𝑝 =

4
Δ𝑥2

∑︁
i
𝑁i (x𝑛𝑝 )v̂𝑛+1

i (xi − x𝑛𝑝 )𝑇 .

For interiorMPMparticles that were split with a collection of surface
and balance particles (Π𝑝 ≠ ∅), more care must be taken since
surface and balance particles will be deleted at the end of the time
step. First, the particle is reassigned its initial mass𝑚𝑝 . Then we
compute the portion of the grid momentum associated with each
surface and balance particle associated with 𝑝 as

p𝑠i𝑟 = �̃�𝑝𝑁i (s𝑛𝑟 )v̂𝑛+1
i , p𝑏i𝑟 = �̃�𝑝𝑁i (b𝑛𝑟 )v̂𝑛+1

i , 𝑟 ∈ Π𝑝 .

We then sum this with the split particle’s share of the grid momen-
tum to define the merged particle’s share of the grid momentum

pi𝑝 = �̃�𝑝𝑁i (x𝑛𝑝 )v̂𝑛+1
i +

∑︁
𝑟 ∈Π𝑝

p𝑠i𝑟 + p𝑏i𝑟 .

Note that the pi𝑝 may be nonzero for more grid nodes than the
particle would normally splat to (see Figure 3). We define the par-
ticle velocity from the total momentum by dividing by the mass
v𝑛+1
𝑝 = 1

𝑚𝑝

∑
i pi𝑝 . To define the affine particle velocity, we use a

generalization of [Fu et al. 2017] and first compute the generalized
affine moments 𝑡𝑝𝛽𝛾 =

∑
i𝑄i𝛼𝛽𝛾𝑝i𝑝𝛼 of the momentum distribution

𝑝i𝑝𝛼 where 𝑄i𝛼𝛽𝛾 = 𝑟i𝑝𝛾𝛿𝛼𝛽 is the 𝛼 component of the 𝛽𝛾 linear
mode at grid node i. Here ri𝑝 = xi − x𝑛𝑝 is the displacement from the
center of mass of the distribution to the grid node xi. We note that
these moments are the generalizations of angular momentum to
affine motion, as was observed in [Jiang et al. 2015], however in our
case we compute the moments from a potentially wider distribution
of momenta 𝑝i𝑝𝛼 . Lastly, to conserve angular momenta (see [Chen
et al. 2021] for details), we define the affine velocity by inverting
the generalized affine inertia tensor

∑
i𝑄i𝛼𝛾𝛿𝑚𝑝𝑁i (x𝑛𝑝 )𝑄i𝛼𝜖𝜏 of the

point x𝑛𝑝 using its merged mass distribution𝑚𝑝𝑁i (x𝑛𝑝 ). However, as

noted in [Jiang et al. 2015], the generalized inertia tensor 𝑚𝑝Δ𝑥
2

4 I is
constant diagonal when using quadratic B-splines for 𝑁i (x𝑛𝑝 ) and
therefore the final affine velocity is A𝑛+1

𝑝 = 4
𝑚𝑝Δ𝑥2 t𝑝 .

Temperature and temperature gradients are transferred in the
same way whether or not a MPM particle was split or not:

𝑇𝑛+1
𝑝 =

∑︁
i
𝑇𝑛+1
i 𝑁 (xi), ∇𝑇𝑛+1

𝑝 =
∑︁
i
𝑇𝑛+1
i ∇𝑁 (xi).

6 EXAMPLES

6.1 Conservation
To demonstrate our method’s ability to fully conserve momentum
and center of mass, we simulate a two-dimensional ellipse that
oscillates under zero gravity due to surface tension forces in a 1m ×
1m domain. The ellipse has semiaxes of 0.3m and 0.1m. We compare
these results to those obtained using themethod of Hyde et al. [2020].

The total linear momentum
∑
i𝑚i𝑣i and the total angular momen-

tum about the origin
∑
i 𝑥i ×𝑚i𝑣i are calculated on the grid. We also

compute the center of mass velocity error
∑

i𝑚i𝑣i∑
𝑝𝑚𝑝

and the center
of mass drift relative to the domain size. As shown in Figure 7 and
8, the present technique perfectly conserves total linear momen-
tum, total angular momentum, and the center of mass of the ellipse,
unlike the approach of Hyde et al. [2020].

6.2 Thermal Boundary Conditions
The Robin boundary condition allows for the realistic convective
heat transfer between the object and the environment. While such
effects may be approximated by a simplified Dirichlet or Neumann
boundary condition, the Robin boundary condition simplifies the
process, and it is crucial for simulating temperature-dependent
effects, such as the resolidification of the liquid wax in Section 6.9.
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Table 1. Summary of the simulation parameters. Example-specific variable 𝑘𝜎
𝐿𝐺

can be found in the corresponding section. The unit for the thermal conductivity
𝐾 is W/(m ·K) ; the convective heat transfer coefficientℎ has a unit of W/(m2 ·K) ; the unit of the boundary heating rate is W/m2. The number of particles/cells
used in each example is listed in Table 2.

Example Δ𝑡 [s] CFL Δ𝑥 [m] Bulk Modulus [Pa] Density [kg/m3] 𝑘𝜎 [N/m] 𝑘𝜎 Variation Heat Transfer Coefficients

Conservation (2D, Explicit) 1 × 10−5 0.6 1/63 4166.67 10 0.1 constant N/A
Two Spheres (2D) 1 × 10−2 to 5 × 10−5 0.6 1/127 833333.33 1 0.1 constant 𝐾 = 0.0025/ℎ = 10, 0/𝑏 = 0
Rotating Heat Flux (2D) 1 × 10−2 to 5 × 10−5 0.6 1/127 833333.33 1 0.1 constant 𝐾 = 0.01/ℎ = 0.1, 0/ℎ = 5
Droplet Impact 1 × 10−2 to 5 × 10−5 0.3, 0.6 1/127 83333.33 10 20, 15, 5, 1, 0.1, 0.05 constant N/A
Droplets on Ramps 1 × 10−2 to 1 × 10−4 0.6 1/63 16666.67 10 1.0(𝑘𝜎

𝑆𝐿
), 𝑘𝜎

𝐿𝐺
varies piecewise-constant N/A

Contact Angles 0.0333 to 1 × 10−4 0.6 1/127 83333.33 1 2.0(𝑘𝜎
𝑆𝐿
), 𝑘𝜎

𝐿𝐺
varies piecewise-constant N/A

Soap Droplet in Water 1 × 10−2 to 5 × 10−5 0.6 1/127 16666.67 1 0.5 (water), 0.01 (soap) piecewise-constant N/A
Wine Glass 1 × 10−2 to 1 × 10−5 0.6 1/127 16666.67 1 0.05(𝑘𝜎

𝑆𝐿
), 0.015(𝑘𝜎

𝐿𝐺
) piecewise-constant N/A

Candles 1 × 10−2 to 1 × 10−4 0.6 1/127 833333.33 10 0.05, 0.1, 0.2, 0.4 constant 𝐾 = 0.1/ℎ = 0.5/𝑏 = 50
Candles (Letters) 1 × 10−2 to 1 × 10−4 0.6 1/127 83333.33 10 0.05 constant 𝐾 = 0.1/ℎ = 2.5/𝑏 = 100
Lid-Driven Cavity (2D) 1 × 10−3 0.6 1/63 416.67 10 1.0 temperature-dependent 𝐾 = 0.1/ℎ = 0/𝑏 = 0
Droplet with Marangoni Effect 1 × 10−2 to 5 × 10−5 0.6 1/127 83333.33 1 0.5 ∼ 2.0 temperature-dependent 𝐾 = 0.1/ℎ = 0.1/𝑏 = 50
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Fig. 7. The present method (blue) conserves total mass, total linear and
angular momentum, and center of mass, unlike the method of Hyde et al.
[2020] (red).

(a) 𝑡 = 6.53 s (b) 𝑡 = 18.9 s

Fig. 8. An elliptical droplet oscillates under surface tension. The black dot
indicates the initial location of the particles’ center of mass, while the red
dot is the position of the current center of mass. The drops in (a) are after 6
oscillation cycles, and the drops in (b) are after 18 cycles. The method of
Hyde et al. [2020] does not conserve the momentum, so the center of mass
drifts. Our method is conservative and preserves the center of mass even
over a long period of time.

To demonstrate this effect, we initialize two discs side-by-side
with radii of 0.15m. The domain size is 1m × 1m, and the ambient

(a) 𝑡 = 0 s (b) 𝑡 = 0.333 s

(c) 𝑡 = 1 s (d) 𝑡 = 8 s

Fig. 9. Heat transfer in two discs. The discs initially have linear temperature
distribution. Simulation A has the Robin boundary condition applied, while
simulation B has only internal thermal conduction. The temperature in each
disc reaches equilibrium over time. With the Robin boundary condition, the
temperature of each disc approaches the ambient temperature.

temperature is 295K. The center of the left disc is at (0.3, 0.5), and
the temperature increases linearly from 265K at 𝑥 = 0.15 to 295K
at 𝑥 = 0.45. The center of the right one is at (0.7, 0.5), and the
temperature increases linearly from 295K at 𝑥 = 0.55 to 325K at
𝑥 = 0.85. The thermal conductivity for both simulation A and B is
0.0025W/(m·K). Simulation A hasℎ = 10W/(m2 ·K), whileℎ = 0 for
simulation B. As shown in Figure 9, the Robin boundary condition
equilibrates the temperature of the discs in simulation A to the
ambient temperature, while in simulation B, only the temperature
in each disc reaches equilibrium.

Ourmethod allows complex time-dependent boundary conditions
to be applied. We simulate in Figure 10 a solid disc with a radius
of 0.15m with a heat flux of 𝑏 = 5W/m2 applied on a section of its
boundary. The disc is in a 1m × 1m domain with the ambient tem-
perature of 295K. The location heat flux rotates about the center of
the disc at 2𝜋 rad/s. Simulation A has the Robin boundary condition
ℎ = 0.1W/(m · K) applied, so the region without heat flux applied
cools the disc to the ambient temperature. Simulation B does not
have the Robin boundary condition, and the heat accumulates inside
the disc.
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(a) 𝑡 = 0.667 s (b) 𝑡 = 1.667 s

(c) 𝑡 = 4 s (d) 𝑡 = 5.333 s

Fig. 10. Constant heat flux is applied to a small section of the disc boundary.
The location of the heat flux rotates about the center of the disc at a constant
speed. Robin boundary condition is enabled in simulation A and disabled in
simulation B.

6.3 Droplet Impact on Dry Surface
Our method is able to handle highly dynamic simulations with a
wide range of surface tension strengths.We simulate several inviscid
spherical droplets with radii of 0.15m free fall and impact a dry,
frictionless, hydrophobic surface. In the top comparison of Figure
11, droplets with different surface tension coefficients drop from a
height of 2.5m. The size of the simulation domain is 1m × 3m × 1m.
With different surface tension coefficients 𝑘𝜎 , the droplets display
distinct behaviors upon impact, as shown in Figure 11.

We also capture the partial rebound and the full rebound behav-
iors of the droplet after the impact. The middle and bottom rows of
Figure 11 show the footage of a droplet with 𝑘𝜎 = 15N/m dropped
from a height of 3.5m (in 1m× 4m× 1m domain) and a droplet with
𝑘𝜎 = 5N/m dropped from a height of 2.5m (in 1m×3m×1mdomain),
respectively. With a higher surface tension coefficient and a higher
impact speed, the droplet is able to completely leave the surface
after the impact. Our results qualitatively match the experiment
outcomes from [Rioboo et al. 2001].

6.4 Droplets on Ramps
As discussed in Section 3.6, our method allows for distinct 𝑘𝜎 values
at solid-liquid and liquid-air interfaces. Tuning the ratio between 𝑘𝜎
at these interfaces allows simulating different levels of hydrophilic-
ity/hydrophobicity. Figure 12 shows an example of several liquid
drops with different 𝑘𝜎 ratios falling on ramps of 5.5◦ angle. The
length of the ramp is 3m, and the domain size is 3m × 0.5m × 1m.
Coulomb friction with a friction coefficient of 0.2 was used for the
ramp surface, and the drop has no viscosity. When there is a larger
difference between solid-liquid and liquid-air surface tension coef-
ficients (i.e., a smaller 𝑘𝜎 ratio), the liquid tends to drag more on
the surface and undergo more separation and sticking. The leftmost
example, with a 𝑘𝜎 ratio of 1.0, exhibits hydrophobic behavior.

6.5 Lid-Driven Cavity
The two-dimensional lid-driven cavity is a classic example in the
engineering literature of the Marangoni effect [Francois et al. 2006;

Fig. 11. (Top) Spherical droplets with different surface tension coefficients
free fall from the same height. In the top figure, from left to right, the
surface tension coefficients are 𝑘𝜎 = 20, 5, 1, 0.1, 0.05N/m. (Middle Row) full
rebound of the droplet (initial height: 3.5m and 𝑘𝜎 = 15N/m). (Bottom Row)
partial rebound of the droplet (initial height: 2.5m and 𝑘𝜎 = 5N/m).

Hopp-Hirschler et al. 2018]. Inspired by works like these, we simu-
late a square unit domain and fill the domain with particles up to
height 1 − 4Δ𝑥 (Δ𝑥 = 1/63), which results in a free surface near
the top of the domain. A linear temperature gradient from 1 on the
left to 0 on the right is initialized on the particles. To achieve the
Marangoni effect, the surface tension coefficient 𝑘𝜎 is set to depend
linearly on temperature: 𝑘𝜎 = 1 −𝑇𝑝 . 𝑘𝜎 is clamped to be in [0, 1]
to avoid artifacts due to numerical precision. Gravity is set to zero,
dynamic viscosity is set to 1 × 10−6Pa ·m and implicit MPM is used
with a maximum Δ𝑡 of 0.001. Results are shown in Figure 13. We
note that the center of the circulation drifts to the right over the
course of the simulation due to uneven particle distribution result-
ing from the circulation of the particles; this drifting behavior is
not observed in works like [Francois et al. 2006] or [Hopp-Hirschler
et al. 2018]. Investigating particle reseeding strategies to stabilize
the flow is interesting future work.

6.6 Contact Angles
Figure 14 shows that our method enables simulation of various
contact angles, emulating various degrees of hydrophobic or hy-
drophilic behavior as a droplet settles on a surface. We adjust the
contact angles by assigning one surface tension coefficient, 𝑘𝜎

𝐿𝐺
, to

the surface particles on the liquid-gas interface, and another one,
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Table 2. Performance measurements for one time step of several of our 3D examples, broken down by (1) sampling: generating surface and balance particles
and conservative momentum splitting, (2) conservative momentum merging, (3) single particle-to-grid transfer, (4) single grid-to-particle transfer, (5) total time
of the linear solve, (6) total time of one time step. Note that each linear solve involves several particle-to-grid and grid-to-particle transfers, and each time step
requires several linear solves. All times are in milliseconds.

Example # Cells # Int. Part. # Surf. Part. Sampling Merging Part.→Grid Grid→Part. Linear Solve Time Step

Droplet Impact (𝑘𝜎 = 5) 2M 794K 100K 2224 20 95 39 1422 10065
Droplets on Ramps (𝑘𝜎

𝑆𝐿
/𝑘𝜎
𝐿𝐺

= 0.05) 1.5M 70K 100K 258 6 28 9 199 1434
Contact Angles (𝑘𝜎

𝑆𝐿
/𝑘𝜎
𝐿𝐺

= 0) 256K 230K 250K 492 17 73 38 647 4286
Soap Droplet in Water 1M 4M 200K 2166 33 575 257 5599 35304
Wine Glass 2M 1.6M 500K 1549 52 163 91 2030 12440
Candle (𝑘𝜎 = 0.1) 2M 618K 50K 1420 7 122 44 2646 29162
Candle Letters 256K 3.1M 100K 4601 15 574 187 8445 172787
Droplet with Marangoni Effect 4.1M 235K 200K 2991 18 82 51 1636 12056

Fig. 12. Liquid drops fall on a ramp with varying ratios between the solid-
liquid and liquid-air surface tension coefficients. From left to right: ratios of
1.0, 0.6, 0.3, 0.05. (Top) Frame 60. (Bottom) Frame 100.

𝑘𝜎
𝑆𝐿

, to those on the solid-liquid interface. Following the Young equa-
tion (Equation (11)) and our assumption that 𝑘𝜎

𝑆𝐺
is negligible, the

contact angle is given by 𝜃 = arccos
(
− 𝑘𝜎

𝑆𝐿
/𝑘𝜎
𝐿𝐺

)
. Note that the

effect of gravity will result in contact angles slightly smaller than
targeted.
A droplet of radius 0.1m is placed right above the ground in a

0.5m × 0.5m × 0.5m domain. Each droplet is discretized using 230k
interior particles and 250k surface particles. The surface tension
𝑘𝜎
𝐿𝐺

is set to 2N/m, and we approximate 𝑘𝜎
𝑆𝐿

based on the desired

Fig. 13. Frame 500 of a two-dimensional lid-driven cavity simulation. The
simulation is initially stationary, but velocity streamlines (red) show the
flow pattern characteristic of Marangoni convection that develops due to a
temperature-dependent surface tension coefficient. The contour plot shows
the evolving temperature field (initially a linear horizontal distribution).

contact angle 𝜃 . A dynamic viscosity of 0.075Pa ·s is used to stabilize
the simulations.

Fig. 14. As our droplets settle, we are able to obtain contact angles of ap-
proximately 45, 90, 135 and 180 degrees, using a 𝑘𝜎

𝑆𝐿
/𝑘𝜎

𝐿𝐺
ratio of −

√
2/2, 0,√

2/2 and 1, respectively.
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6.7 Soap Droplet in Water
We demonstrate a surface tension driven flow by simulating soap
reducing the surface tension of the water. We initialize a 1m ×
0.05m× 1m rectangular water pool, set a 0.075m-radius and 0.025m-
height cylindrical region at the center of the pool to be liquid soap
and identify particles in this region to be soap particles. We set
the surface tension coefficients for the surface particles based on
the type of its closest MPM particles. Surface particles associated
with the water particles have higher surface tension than those
associated with the soap particles. The viscosity is set to 0 in this
example.

In order to visualize the effect of the surface tension driven flow,
we randomly selected marker particles on the top surface of the
pool. Due to the presence of the soap, the center of the pool has
lower surface tension than the area near the edge of the container.
The surface tension gradient drives the particles to flow from the
center to the edge. Figure 15 shows footage of this process.

Fig. 15. The soap in the center of the pool surface reduces the surface
tension. The surface tension gradient drives the markers towards the walls
of the container. Frames 0, 10, 20, 40 are shown in this footage.

6.8 Wine Glass
We consider an example of wine flowing on the surface of a pre-
wetted glass. The glass is an ellipsoid centered at (0.5m, 0.7m, 0.5m)
with characteristic dimensions 𝑎 = 0.4m, 𝑏 = 0.6m, and 𝑐 = 0.4m.
We initialize a thin band of particles with the thickness of 2Δ𝑥m on
the surface of the wine glass and observe the formation of ridges
and fingers as the particles settle toward the bulk fluid in the glass.
We set the surface tension coefficient on the liquid-gas interface to
be 𝑘𝜎

𝐿𝐺
= 0.05N/m and the one on the solid-liquid interface to be

𝑘𝜎
𝑆𝐿

= 0.015N/m. The piecewise constant surface tension leads to a
more prominent streaking behavior of the liquid on the glass wall.
The results are shown in Figure 16.

Fig. 16. Wine is initialized in a glass with part of the interior pre-wetted.
The falling wine forms tears and ridges, and the tears eventually connect
with the bulk fluid. Frames 30 and 90 are shown.

6.9 Candles
We simulate several scenarios with wax candles. The height of the
candle is 0.6m and the radius is 0.1m. The domain size is 1m ×
1m × 1m. In these examples, wax melts due to a heat source (candle
flame) and resolidifies when it flows away from the flame. Ambient
temperature 𝑇 is taken to be 298K, and the melting point is 303K.
Thermal conductivity 𝐾 is taken to be 0.1W/m · K, and specific heat
capacity 𝑐𝑝 is set to 1J/K. No internal heat source is used (𝐻 = 0);
instead, heating and cooling are applied only via the boundary
conditions.

To simulate the candle wicks, we manually construct and sample
points on cubic splines. As the simulation progresses, we delete par-
ticles from the wick that are too far above the highest (𝑦-direction)
liquid particle within a neighborhood of the wick. The flames are
created by running a separate FLIP simulation as a postprocess
and anchoring the result to the exposed portion of each wick. We
rendered these scenes using Arnold [Georgiev et al. 2018] and post-
processed the renders using the NVIDIA OptiX denoiser (based on
[Chaitanya et al. 2017]).

We consider the effect of varying 𝑘𝜎 on the overall behavior of the
flow. Figure 4 compares 𝑘𝜎 values of 0.05N/m, 0.1N/m, 0.2N/m, and
0.4N/m. In these examples, a grid resolution of Δ𝑥 = 1/127m was
used, along with boundary condition parameters ℎ = 0.5W/m2 · K
and 𝑏 = 50W/m2. The figure demonstrates that as surface tension
increases, themoltenwax spreads significantly less. As thewax cools
and resolidifies, visually interesting layering behavior is observed.
Figure 17 shows an example of several candle letters melting

in a container. Wicks follow generally curved paths inside the
letters. Melt pools from the different letters seamlessly interact.
This simulation used a surface tension coefficient 𝑘𝜎 = 0.05N/m,
ℎ = 2.5W/m2 · K, 𝑏 = 100W/m2, dynamic viscosity of 0.01Pa · s,
Δ𝑥 = 1/127m, and a bulk modulus of 83333.33Pa for liquid and solid
phases.

6.10 Droplet with Marangoni Effect
We simulate an inviscid liquid metal droplet that moves under the
Marangoni effect, i.e., due to a temperature-induced surface tension
gradient. A spherical drop with radius of 0.1m is initialized at posi-
tion (0.5m, (0.1+3.5Δ𝑥)m, 0.5m) inside a 2m×1m×1m domain. We
then turn on the heating 1 second after the simulation starts (while
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Fig. 17. Letter-shaped candles melt inside a container. (Top) Frame 1, before
flames are lit. (Middle) Frame 60, in the middle of melting. (Bottom) Frame
200, as flames are extinguished and wax pools resolidify.

the droplet is still spreading). The Neumann boundary condition
is applied to heat the particles in the region with 𝑥 ≤ 0.5m. The
thermal conductivity𝐾 is set to be 0.1W/(m ·K), and the convective
heat transfer coefficient ℎ is 0.1W/(m2 · K). The boundary heating
rate 𝑏 = 50W/m2 is much higher than the conduction and convec-
tion, so the heat transfer inside the droplet and the heat exchange
between the droplet and the environment are less prominent.
We define the surface tension coefficient as a function of tem-

perature: 𝑘𝜎 = min(0.09(𝑇 − 𝑇 ) + 0.5, 2)N/m, where 𝑇 = 50K is
the ambient temperature. At its original temperature, the surface
tension coefficient 𝑘𝜎 of the droplet is 0.5N/m. As the temperature
increases, 𝑘𝜎 increases linearly with the temperature. The maxi-
mum allowable surface tension strength is 2N/m. After the heating,
surface particles on the hotter side of the droplet have higher surface
tension. The stronger surface tension penalizes the area changes and
drives the particles to flow to the colder side, as shown in Figure 18.
This surface tension gradient results in an interesting self-propelled
behavior of the liquid metal droplet.

6.11 Performance
Table 2 shows average per-timestep runtime details for several of our
examples. For this table, all experiments were run on a workstation
equipped with 128GB RAM and with dual Intel® Xeon® E5-2687W
v4 CPUs at 3.00Ghz.

7 DISCUSSION AND FUTURE WORK
Our method allows for simulation of surface tension energies with
spatial gradients, including those driven by variation in tempera-
ture. Our MPM approach to the problem resolves many interesting

Fig. 18. A liquid metal droplet subjected to heating on one side. The surface
tension coefficient increases as the temperature increases. (Top) the liquid
metal at frame 45 and frame 130. (Bottom) the particle view of temperature
distribution at frame 45 and frame 130. The red color indicates higher
temperature.

characteristic phenomena associated with these variations. How-
ever, while we provide perfect conservation of linear and angular
momentum, our approach to the thermal transfers is not perfectly
conservative. Developing a thermally conservative transfer strategy
is interesting future work. Also, although we simulate tears of wine
on the walls of a glass, we did not simulate the effect of alcohol
evaporation on the surface energy variation. Adding in a mixture
model as in [Ding et al. 2019] would be interesting future work.
Lastly, although our approach was designed for MPM, SPH is more
commonly used for the simulation of liquids. However, SPH and
MPM have many similarities, as recently shown by the work of
Gissler et al. [2020b], and it would be interesting future work to
generalize our approach to SPH.
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