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Abstract—Forecasting companies’ financial metrics, such as
profit or revenue, from textual data is typically heuristic and
subjective due to the qualitative nature of business models and
data. However, this paper shows that these metrics can be pre-
dicted with surprising accuracy using only a textual description
of a company’s business and public data from peer companies
using our novel framework CUBAN (Contextual Understanding
of Business performance through Analysis of Neighboring com-
panies). We introduce a multimodal transformer model with an
annotation-gating mechanism that effectively integrates textual
context with financial statements. Trained on 10-K reports from
public companies since 2000, our model predicts the future log
revenue and operating profit from descriptions of a company’s
business and those of its peers (along with peer financial data),
achieving a correlation coefficient (Pearson’s R) of 0.78 for log
revenue prediction and a 79% F1-score for operating profit
classification, demonstrating its efficacy in forecasting financial
performance from primarily qualitative data.

Index Terms—Deep Learning, Finance, Natural Language
Processing, Large Language Models, Transformers

I. INTRODUCTION

Private equity investors and venture capitalists often face
the challenge of valuing firms in the absence of quantitative
data typical of public companies, relying instead on qualitative
information such as textual descriptions of business models,
pitch decks, and technical reports [1]. Even in the public
markets, where greater quantitative data is typically available,
equity traders frequently seek further insights from textual
data to derive advantages [2]. However, deriving accurate
assessments from qualitative data has proven to be a difficult
task. For example, despite ample qualitative information that
may exist about a startup, such information is unlikely to
accurately assess product-market fit, the lack of which is one
of the leading causes of startup failure [3].

Recent advances in natural language processing (NLP) have
introduced various useful techniques for encoding text as
numerical representations, such as SBERT [4]. Thus, one
can apply methodologies for numerical data on qualitative
and textual data. While various recent works have leveraged
learning and NLP approaches on text for financial forecasting
(e.g., [5]–[7]), the present paper offers a novel method that

is distinct in its architecture, source data, and outputs. Our
proposed deep learning approach estimates a firm’s future
revenue and profitability based solely on textual descriptions of
its business and publicly available data from comparable com-
panies. Inspired by comparable company analysis [8], [9], our
framework, CUBAN (Contextual Understanding of Business
performance through Analysis of Neighboring companies),
leverages information from semantically similar firms to make
predictions. To the best of our knowledge, this is the first large-
scale, multimodal approach aimed at predicting a firm’s future
performance where the only information about that firm used
at query time is its textual business description.

We note that with the types of data considered in this paper,
there are two particularly relevant challenges:

• Concept drift: Market dynamics evolve over time, al-
tering consumer behavior and rendering earlier data less
relevant. Learning models often assume that data distri-
butions are independent and identically distributed (i.i.d.)
over time [10], which leads to performance degradation
when market conditions change.

• Multimodal heterogeneity: In business and finance,
information is often expressed through both text and
structured (i.e., tabular, quantitative) data. The ability
to combine these modalities effectively is essential, as
relying on just one may lead to misleading conclusions.
However, without normalization, integrating these diverse
data types can result in numerical instability and model
convergence issues.

In response, CUBAN addresses these challenges by integrat-
ing a pretrained text embedding model, a similarity search
algorithm, and a machine learning model designed to predict
revenue and profitability using multimodal data from textual
descriptions and financial statements.

As demonstrated in Figure 2, simply performing a similarity
search alone does not provide adequate information, as the
search not only identifies peers but also other connections,
including customer/supplier relationships and companies with
complementary products. This becomes problematic for a
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Fig. 1: Overview of our CUBAN framework. A company description is encoded into a vector of length 1024 using a text
embedding model. Similarity search finds similar companies in this embedding space. The financial data of these companies
are passed into a machine learning model, which ultimately predicts financial metrics for the target company.

naive semantic search engine that aims to identify peer firms
exclusively. However, we note that this limitation can be
turned into an advantage by integrating an additional analyst
model that addresses the complexity of analyzing the dynamics
among these interconnected firms.

Our results show that with CUBAN, mere textual de-
scriptions of a company’s business and the businesses of its
peers (along with peer financial data) can predict metrics like
revenue and profitability with surprising accuracy.

In summary, we have made three key contributions:
• We introduce CUBAN, a novel framework that leverages

information from semantically similar firms to improve
the accuracy of financial forecasting.

• We develop a novel multimodal transformer model,
LCCT, that integrates textual descriptions and structured
financial data using an annotation-gating mechanism.

• We empirically validate our model on 10-K reports from
public companies, demonstrating its efficacy in predicting
financial performance with a correlation coefficient of
0.78 for log revenue prediction and a 79% F1-score for
operating profit classification.

II. RELATED WORK

A. Machine Learning in Finance

The application of machine learning (ML) techniques in
finance has gained significant momentum, offering new ap-
proaches to tackle complex financial problems. Tradition-
ally, financial forecasting and analysis have relied heavily
on structured financial data such as balance sheets, income
statements, and cash flows. While these quantitative metrics
are essential for evaluating a company’s financial health, they

often fail to capture qualitative aspects, particularly for early-
stage firms with limited historical data. Advancements in ML
have enabled the incorporation of alternative data sources,
including textual information from company reports, news
articles, and social media, to enhance predictive models. [11]
provided a comprehensive review of recent ML applications
in finance, highlighting its potential to improve forecasting
accuracy and risk assessment. They emphasized that ML meth-
ods could address complex, nonlinear relationships in financial
data, which traditional econometric models might miss. In the
context of asset pricing, [12] demonstrated how ML techniques
could be employed to better predict asset returns by capturing
intricate patterns in large datasets. Their work showed that
models like random forests and neural networks outperformed
traditional linear models in out-of-sample predictions. For
credit risk assessment, [13] proposed integrating unsupervised
and supervised ML algorithms, showing that such hybrid
models outperform traditional methods. Similarly, [14] utilized
neural network rule extraction and decision tables to evalu-
ate credit risk, providing insights into the reasoning behind
ML decisions. Detecting fraudulent activities is another area
where ML has made significant contributions. [15] developed
a machine learning approach to detect accounting fraud in
publicly traded U.S. firms, emphasizing the effectiveness of
ML in identifying anomalies that may not be evident through
conventional analysis.

B. Text Embedding

Text embedding techniques are essential for converting
textual data into numerical representations that ML models can
process. Early methods like Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) [16] and Word2Vec [17] focused on



capturing word-level semantics based on word frequencies and
co-occurrences. Word2Vec, for instance, uses neural networks
to produce word embeddings that reflect semantic similarities
between words.

The introduction of the transformer architecture [18] revo-
lutionized text representation by enabling models to capture
contextual relationships between words in a sentence more ef-
fectively. Building on this architecture, Bidirectional Encoder
Representations from Transformers (BERT) [19] allowed for
bidirectional training, understanding the context of a word
based on both its left and right surroundings. Sentence-
BERT (SBERT) [4] further advanced this field by generating
sentence-level embeddings using a siamese network architec-
ture. SBERT enables the comparison of semantically meaning-
ful sentence embeddings using cosine similarity, significantly
reducing computational overhead and improving performance
on tasks like semantic textual similarity and clustering.

In the financial domain, these advanced text embedding
techniques have been utilized to analyze large volumes of un-
structured text data. For instance, [20] developed a knowledge-
driven text-embedding approach to analyze firm reports for
volatility prediction, demonstrating the effectiveness of com-
bining domain-specific knowledge with advanced embedding
techniques. [21] used Word2Vec and SBERT to perform
clustering of financial institutions based on annual report data.

C. Company Similarity Analysis

Identifying similar firms or peer companies is crucial in
various financial applications, including valuation, risk as-
sessment, and investment strategy development. Traditionally,
industry classifications such as the Global Industry Classifi-
cation Standard (GICS) have been used to group companies.
However, these classifications can be coarse-grained and may
not capture nuanced differences, especially in rapidly evolving
industries [22].

Recent research has explored the use of Natural Language
Processing (NLP) and machine learning techniques to derive
more granular measures of company similarity based on
textual data. For instance, [23] introduced the concept of
text-based network industries, grouping firms based on the
similarity of product descriptions in their SEC filings. This
approach allows for dynamic industry groupings that better
reflect the competitive landscape. [24] utilized Word2Vec to
create embeddings of news articles, allowing the identification
of peer firms based on semantic content, and in a similar
vein, [25] proposed defining peer firms using common ana-
lyst coverage, arguing that analysts’ choices provide insight
into firm relatedness beyond traditional classifications. Their
method resulted in more homogeneous groups compared to
standard industry classifications. Leveraging large language
models (LLMs), [26] embedded business descriptions from
SEC filings to reproduce GICS classifications and reveal
similarities in financial performance metrics. Their findings
suggest that LLMs can effectively capture the semantic content
of business descriptions, enabling more nuanced company
similarity analysis. Furthermore, [27] developed an industry

peer grouping system based on artificial intelligence that
clusters companies using machine learning algorithms on
various attributes, including textual data from financial reports.
Their system demonstrated better performance over traditional
classification schemes.

Lastly, we highlight [28], which conducted a comparative
study on measuring company similarity using financial state-
ments. The results illustrated the importance of combining
structured financial data with textual analysis. They empha-
sized that models based on graph theory and interconnected
structured data could enhance the accuracy of similarity as-
sessments.

“The Company designs, manufactures and markets smartphones, personal 

computers, tablets, wearables and accessories…”

Query (Apple Inc.):

Result:

“VIZIO’s mission is to deliver immersive entertainment and 

compelling lifestyle enhancements…”

“Peloton is a leading global fitness company with a highly 
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“Our purpose is to empower people by simplifying work. As a 

result, our mission is to help organizations succeed with Apple.”

Complementary

Unrelated

Customer
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empower every person and every…”
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“We are a leading worldwide developer and fabless supplier of 

premium mixed signal semiconductor solutions…”
Supplier

Fig. 2: Identifying the top k nearest neighbors to Apple’s Item
1 text, as detailed in the 2023 10-K report, produces not only
competitors but also identifies customer/supplier relationships
and companies offering complementary products.

III. DATA COLLECTION AND PREPROCESSING

A. Data Collection

The United States Securities and Exchange Commission
(SEC) requires publicly traded companies to file 10-K an-
nual reports, which provide a comprehensive overview of a
company’s financial condition, including detailed information
on business activities, fiscal performance, and governance.
For this study, we collected 193,000 10-K reports from more
than 30,000 companies dating back to 2000 using the SEC
EDGAR API. We specifically extracted and processed the
“Item 1. Business Overview” section and used the Refinitiv
Eikon API to obtain standardized annual and quarterly finan-
cial statements corresponding to the relevant fiscal years and
companies. The dataset was then divided into three segments:
2000–2017 for training, 2018–2020 for validation, and 2021–
2024 for testing. A one-year gap between these segments was
maintained to prevent data leakage.

B. Data Preprocessing and Feature Engineering

Each organization’s Item 1 text was transformed into a
1,024-dimensional embedding vector. The financial data, com-
prising balance sheets, income statements, and cash flow



statements, formed the basis of our raw financial data. Since
standard accounting procedures typically omit entries with
values of 0, all NaN entries have been replaced with 0.
The target variables are generated by taking log revenue and
operating profit margin values of the next year (or quarter).

The feature engineering process involves concatenating all
of the following transformations to the raw financial data:

• symmetric logarithm symlog(x) = sgn(x) log(|x|+ 1),
• dividing by total assets,
• dividing by revenue,
• dividing by market capitalization, and
• symmetric logarithm of the yearly (or quarterly) growth.
Ultimately, the embedding vectors are described by the

dimension de, and the fundamental features have a dimension
of df , with values de = 1024 and df = 224.

The symmetric logarithm transformation was chosen to ad-
dress the fat-tailed distributions characteristic of financial data,
which often include both positive and negative values while
being invertible and less dependent on the data distribution
compared to traditional standardization methods like z-score
normalization.

Finally, the data are organized into two comprehensive
datasets: the annual and the quarterly versions. The annual
dataset is compiled by performing an inner join on all three
data categories: embeddings, fundamentals, and targets. On
the other hand, the quarterly dataset uses a time-sensitive join
that aligns quarterly fundamentals with embeddings within a
year. Because the targets derive from the fundamentals, they
share the same time intervals, allowing for a simple inner
join. This process generates a yearly dataset with 56,844
training samples, 4,297 validation samples, and 7,695 test
samples. Similarly, the quarterly dataset includes 202,415
training samples, 15,199 validation samples, and 7,746 test
samples.

C. Training and Validation

To simulate the prediction of a financial metric, a random
sample (referred to as the query) is selected from the dataset.
Subsequently, we collect its k nearest neighbors while exclud-
ing the query’s fundamentals. Thus, each training batch for the
predictor model contains:

• Query Embeddings: The “Item 1” business description
embeddings for the randomly sampled query company,
with dimensions (B, de), where de is the dimensionality
of the encoded textual embeddings from the pretrained
model.

• Neighbor Embeddings and Financial Data: For each
query company, we retrieve the k nearest neighbors
based on cosine similarity of their business description
embeddings. These neighbor embeddings are combined
with their corresponding financial data. The resulting
input for the neighbors has dimensions (B, k, de + df ),
where k is the number of neighbors.

• Time Differences: The differences in years between
the filing dates of the query company and those of its

neighboring companies are incorporated as extra features,
structured with dimensions (B, k). This is similar to the
role of positional encoding in conventional transformer
architectures.

• Target Variable: For each query company, the target
variable (such as next year’s revenue or operating profit
margin) is denoted by (B, 1).

At each epoch, the model is evaluated on the validation set.
The model that performs best on the validation set is then used
for evaluation on the test set to ensure generalization perfor-
mance. In addition, the validation and test set are constructed
so that the model is evaluated only by query companies that do
not exist in the training set to make the testing condition more
rigorous. In other words, the model does not face any query
companies that appear in the validation or test sets during
training, whether as a query or a neighbor.

IV. METHODS

A. Problem Formulation
The primary objective of this research is to develop a

predictive model capable of estimating a query company’s
future financial metrics, such as revenue and profitability, using
only its textual business description and the publicly available
financial data of comparable companies.

Formally, let C = c1, c2, . . . , cN be a set of companies
with known data. Each company ci has an associated textual
business description ei and financial data F i, which may
include balance sheets, income statements, and cash flow
statements. Also, let cq be the query company with a textual
business description eq , for which we aim to predict future
financial metrics yq (e.g., the revenue or profitability ratios
for the next period).

Our goal is to learn a function f that maps the description
of the query company and the data from similar companies to
an estimate of its future financial metrics:

ŷq = f(eq, {(ei,F i)}i∈Ik
), (1)

where ŷq is an estimate of yq and Ik is the index set of the
top k companies most similar to cq based on the similarity of
their business descriptions.

In seeking such an f , we make the following assumptions:
• Companies with similar business descriptions are likely

to contain information beneficial for predicting the query
company’s performance metrics as they are exposed to
similar market dynamics.

• The text embedding model effectively captures the se-
mantic meaning of business descriptions, enabling accu-
rate similarity assessments.

• The financial data of comparable companies are timely
and relevant, reflecting current market conditions appli-
cable to the query company.

B. CUBAN
Our CUBAN framework (see Figure 1) consists of three

main components: a pretrained text embedding model, a sim-
ilarity search algorithm, and the predictor model, which fuses



textual embeddings and financial data for financial prediction.
These components work as follows.

1) Long Range Text Embedding: We begin by encoding
the textual description of a company’s business model using
mGTE [29], a state-of-the-art text embedding model. This
model transforms the input text into a 1,024-dimensional vec-
tor, capturing the semantic nuances of the business description.
We opted for this embedding model because it has a long
enough context window to cover most company descriptions
in our dataset, while still being relatively computationally
lightweight. mGTE is capable of processing English text inputs
up to a maximum of 8,192 tokens, which equates to roughly
7,000 words or 30,000 characters. In contrast, most company
descriptions are typically less than 6,000 tokens.

2) Similarity Search: Once the business model is embed-
ded, we perform a similarity search to identify the top k
companies with the most similar embeddings within a year
based on cosine similarity. Figure 2 shows an example result
of our similarity search conducted for Apple. For this search,
we only consider peer companies whose financial data is
less than one year old (excluding, e.g., firms that have gone
out of business or gone private) in order to improve the
accuracy of our predictions. The financial data of these peer
companies, including their most recent financial statements,
are then retrieved for further analysis.

3) Financial Metric Prediction: Ultimately, all the inputs
are provided to a supervised machine learning model designed
to forecast desired financial metrics for the upcoming year
or quarter. Through empirical studies, we show that choosing
various machine learning models can lead to diverse results
depending on other hyperparameters such as k. Section V
provides an in-depth analysis to determine the optimal value
of k and the machine learning model that achieves superior
performance.

C. Prediction Models

In our experiments, we assess the predictive power of
several different machine learning models.

a) MeanPool+Linear and MeanPool+XGBoost: These
models provide a baseline that can be used within CUBAN’s
framework. The central concept is that the query company
exhibits market behaviors and asset patterns analogous to those
of comparable firms. Accordingly, the input consists of (1) the
query company’s embedding and (2) the averaged fundamental
data from the k nearest neighbor firms. Linear and logistic
regressions, both incorporating L2 regularization, are used.
Additionally, we test XGBoost [30] on this dataset to account
for non-linear dynamics.

b) MLP+MeanPool: This model first integrates query
and embedding data using a gating mechanism, processes
the result through a 3-layer element-wise MLP with ReLU
activations, and finally performs mean pooling before the
prediction output. The gating mechanism fuses the neighbor
embeddings N with the corresponding tabular financial data
T ∈ Rk×df . Each neighbor embedding gates its corresponding

row of financial data using the CrossGLU module. The gating
operation is defined as:

GatedOutput = σ(Wg · E)⊙ (Wf · F ), (2)

where:
• E ∈ Rk×de represents the neighbor embeddings.
• F ∈ Rk×df represents the tabular financial data for the

neighbors.
• Wg ∈ Rde×doutput is the learned weight matrix for the

gating signal.
• Wf ∈ Rdf×doutput is the learned weight matrix for trans-

forming the financial data.
• σ is the sigmoid activation function, and ⊙ denotes

element-wise multiplication.
The gating mechanism allows each neighbor embedding to

modulate the corresponding financial data before it is passed
to subsequent layers. This ensures that the textual context of
each neighbor directly influences how its financial data is used
in the model.

c) LCCT: Our proposed Locally Contextualized Com-
parative Transformer (LCCT) model (Figure 3) is a novel
transformer-based model that integrates textual embeddings
and financial data, allowing for the joint processing of business
descriptions and structured financial data. The architecture
is comprised of several key components, including cross-
attention, self-attention, a feed-forward network, and a gating
mechanism for multimodal fusion. Below, we outline each
layer in detail.

The cross-attention layer attends to the query company’s
textual embedding and retrieves relevant information from the
financial data of similar companies. Given a query embedding
Q ∈ R1×de and a set of neighbor embeddings N ∈ Rk×de ,
the query is first broadcast to match the shape of N , resulting
in Q′ ∈ Rk×de . The cross-attention operation is then applied
as follows:

Across = MultiHeadAttn(Q′, E,E) ∈ Rk×de .

This attention mechanism allows the model to attend to and
aggregate relevant financial data from similar companies.

After cross-attention, the self-attention mechanism refines
the representation by attending to internal relationships among
the neighbor embeddings E:

Aself = MultiHeadAttn(E,E,E) ∈ Rk×de .

The self-attention mechanism ensures that the model captures
the interdependencies between neighbors.

Subsequently, each attention output is passed through a
position-wise feed-forward network to further transform the
representations:

FFN(x) = W2 · Activation(W1 · x+ b1) + b2,

where W1 ∈ Rde×dff and W2 ∈ Rdff×de are learned weight
matrices, and dff is the hidden dimension of the feed-forward
network. The activation function can vary (e.g., ReLU, GELU,



N

Q

F

y

LCCT x N

Attention(Broadcast(Q), N, N)

Attention(N, N, N)

FFN

Multimodal
Gating

Mean Pool

Fig. 3: Schematic of the LCCT model architecture and its use.
An LCCT takes in N textual embedding vectors of company
descriptions, along with N associated vectors F corresponding
to those companies’ financial data. Along with a description
Q of a target company, this data is passed through several
attention, fusion, and pooling units to ultimately predict the
financial metrics for the target company.

or SwiGLU), but we have empirically found that vanilla ReLU
activation performed best on our validation sets.

Finally, the information in the fundamentals data is fused
using the CrossGLU gating mechanism (see Eq. 2), and layer
normalization [31] is applied after each of the attention blocks
and the feed-forward block to stabilize training. LCCT also
employs residual connections help retain the original input
information, preventing gradient vanishing during backprop-
agation, as illustrated in Figure 3. For all the experiments
carried out in this study, we utilized N = 4, meaning there
were four LCCT layers stacked sequentially to produce the
final output.

V. EXPERIMENTS

We evaluated several machine learning models across two
primary tasks: predicting revenue and profitability for the
subsequent period, using both annual and quarterly datasets.
Revenue prediction was framed as a regression task to estimate
the logarithm of the expected revenue, while profitability

TABLE I: Performance evaluation on the annual dataset

Log Revenue Regression (Pearson’s R)
Model k=4 k=8 k=16 k=32 k=64
MeanPool+Linear 0.019 -0.020 -0.02 0 0
MeanPool+XGBoost 0.726 0.726 0.720 0.713 0.712
MLP+MeanPool 0.759 0.774 0.773 0.778 0.783
LCCT 0.752 0.768 0.778 0.776 0.791

Profitability Classification (F1)
Model k=4 k=8 k=16 k=32 k=64
MeanPool+Logistic 0.748 0.747 0.753 0.750 0.752
MeanPool+XGBoost 0.777 0.782 0.783 0.786 0.783
MLP+MeanPool 0.792 0.784 0.779 0.785 0.806
LCCT 0.793 0.795 0.796 0.797 0.793

TABLE II: Performance evaluation on the quarterly dataset

Log Revenue Regression (Pearson’s R)
Model k=4 k=8 k=16 k=32 k=64
MeanPool+Linear 0 0 0 0 0
MeanPool+XGBoost 0.631 0.628 0.635 0.653 0.635
MLP+MeanPool 0.695 0.686 0.703 0.702 0.720
LCCT 0.663 0.661 0.698 0.693 0.712

Profitability Classification (F1)
Model k=4 k=8 k=16 k=32 k=64
MeanPool+Logistic 0.695 0.669 0.739 0.742 0.705
MeanPool+XGBoost 0.770 0.771 0.777 0.781 0.780
MLP+MeanPool 0.768 0.770 0.779 0.771 0.759
LCCT 0.778 0.778 0.779 0.782 0.780

prediction involved classifying whether the operating profit
would be positive or negative.

For revenue prediction, we used Pearson’s correlation co-
efficient (R) as it captures the linear relationship between
the predicted and actual logarithmic revenues, providing a
robust and intuitive measure of model efficacy in identifying
revenue trends rather than absolute values. This is partic-
ularly important given the nature of the problem, where
understanding the relative rankings between predicted values
among firms matters more than precise point predictions.
To evaluate profitability classification, we used the F1-score.
Due to variations in label distribution over time arising from
fluctuating market conditions, and considering that both false
positives and false negatives carry considerable implications
here, the F1-score provides an appropriate assessment of the
model’s classification performance.

In our comparisons, the models evaluated comprise baseline
methods such as MeanPool+Linear and MeanPool+XGBoost,
as well as our innovative models, including MLP+MeanPool
and LCCT. The results, presented in Tables I and II, empha-
size the durability of the LCCT model, which consistently
exceeded baseline methods, especially in revenue regression
with Pearson’s R of 0.791 and profitability classification with
an F1-score of 0.797.

While the MLP+MeanPool model showed better results for
revenue prediction in the quarterly dataset, LCCT demon-
strated strong performance across most scenarios, indicating
that the attention mechanism serves as an effective inductive
bias. Performance discrepancies between models suggest that
the optimal architecture may depend on factors such as time



TABLE III: Data Ablation Analysis on Log Revenue Regres-
sion on the Annual Dataset (Pearson’s R) with k = 32

Model LCCT Linear XGBoost
query+embed+fund 0.776 0 0.713
query+embed 0.743 0.757 0.710
query+fund 0.776 0 0.714
embed+fund 0.639 0.002 0.632

resolution, number of neighbors, and prediction target.
Conducting additional ablation studies (Table III) has em-

phasized the essential function of multimodal integration in
our framework’s performance. The table illustrates the pre-
dictive power of models based on LCCT, MeanPool+Linear,
and MeanPool+XGBoost when various pieces of data are
removed (the query company’s embedding, nearest neighbor
embeddings, or nearest neighbor fundamentals). The table
shows that excluding the query embedding resulted in a more
pronounced reduction in performance compared to omitting
financial data, highlighting the significance of textual descrip-
tions in forecasting a company’s future financial metrics.

Additionally, we demonstrate that CUBAN with LCCT
maintains robustness against concept drift, as anticipated.
Figure 4 compares a naı̈ve approach, which involves training
XGBoost only on query embeddings without comparable
data, against CUBAN-based methods. The result suggests
that CUBAN with LCCT experiences the slowest decline in
performance over time. Additionally, in the operating profit
classification task, LCCT is the only model that does not
experience seasonal performance drops, which implies that our
approach is relatively robust against changing market dynam-
ics. We also note that LCCT has both a higher maximum and
higher minimum scores than all other baselines.

VI. CONCLUSIONS AND FUTURE WORK

We presented CUBAN, a novel framework that combines
qualitative and quantitative data to forecast a company’s fi-
nancial performance. By leveraging advanced text embedding
techniques alongside financial data from comparable firms, we
demonstrate that qualitative business descriptions can serve
as a powerful predictor of future performance. Our findings,
which include a Pearson’s R of 0.79 for predicting revenue and
an F1-score of 80% for classifying profitability, underscore the
benefits of merging NLP techniques with financial modeling.
The results reveal that textual business descriptions, when
properly integrated with financial data from comparable firms,
offer substantial predictive power. This aligns with the growing
interest in applying natural language processing to domains
traditionally reliant on structured data, such as finance.

The robust performance of our novel LCCT model across
various tasks highlights the necessity of capturing semantic
associations in textual data. Additionally, the capability to
amalgamate data from similar companies enhances its predic-
tive power by resembling traditional company peer analysis.
Nonetheless, the differing performance across models and
datasets implies that no one model is universally superior,
suggesting value in selecting models tailored to specific needs.
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Fig. 4: Evolution of evaluation metrics over time on the
annual set trained on 2000-2013 and tested on 2014-2023.
(a) Operating profit classification. (b) Log revenue regression.

Note that neural networks tend to scale well as the number
of neighbors k increases, despite the common perception that
traditional machine learning models tend to perform much
better on structured, tabular datasets [32], [33]. We attribute the
success of our approach to the rigorous data preprocessing and
keeping the information flow for tabular dataset rather shallow.

A notable finding from our ablation study (Table III) is the
critical role of textual data in making predictions. The model’s
greater reliance on business descriptions than on financial fun-
damentals indicates the substantial value that qualitative data
provides in assessing a company’s prospects. Nevertheless, this
raises questions about the selection of comparable companies.
While our model uses cosine similarity on textual embeddings,
the definition of similarity may vary between the model and
human analysts, suggesting the need for further exploration of
hybrid approaches that incorporate both algorithmic methods
and expert judgment.

In finance, CUBAN provides a valuable tool for situations
where data is sparse or unavailable, such as with early-



stage companies or in industries with limited transparency.
By relying on textual business descriptions, the model offers
an alternative method for financial evaluation, potentially sup-
porting decisions in investment, M&A, and strategic planning.
Furthermore, the ability to extend this framework to other
sectors or geographic regions underscores its versatility.

More broadly, this work contributes to the field of mul-
timodal learning by demonstrating a successful integration
of qualitative and quantitative data for financial prediction.
The combination of text and structured data allows for a
more comprehensive analysis of business models, particularly
in cases where financial metrics alone may be insufficient.
Beyond finance, the flexibility of the CUBAN framework
suggests potential applications in other fields where qualitative
data plays a central role, such as law or healthcare.

Despite these promising results, several limitations remain.
Reliance on high-quality textual data could pose challenges,
especially in regions where such data is less standardized or
unavailable. For instance, since Item 1 within 10-K reports
is generally formal and comprehensive, examining a private
business or start-up might necessitate an extra measure of
creating in-depth reports in natural language to align with
the style and depth found in Business Overview sections for
reliable forecasts using CUBAN. Additionally, the complexity
of transformer-based models can hinder interpretability, which
is crucial in fields like finance where stakeholders require
clear justifications for decisions. Finally, while our framework
addresses historical data, adapting to rapidly evolving market
conditions remains an area for further development.

In the future, research might aim to improve the model’s
interpretability by integrating explainability methods like at-
tention visualization or model distillation. Extending the model
to cover more data sources, including social media sentiment
or industry reports, could enhance its stability. Combining
expert knowledge with algorithmic insights could provide a
route to more precise predictions, especially in unstable or
emerging markets.
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