
On Obtaining Sparse Semantic Solutions for Inverse Problems, Control,
and Neural Network Training

David A. B. Hydea,∗, Michael Baob,∗∗, Ronald Fedkiwb,c,∗∗

aUCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, United States
bStanford University, 353 Jane Stanford Way, Gates Computer Science Room 207, Stanford, CA 94305, United States

cEpic Games, Inc., 620 Crossroads Boulevard, Cary, NC 27518, United States

Abstract

Modern-day techniques for designing neural network architectures are highly reliant on trial and error,
heuristics, and so-called best practices, without much rigorous justification. After choosing a network ar-
chitecture, an energy function (or loss) is minimized, choosing from a wide variety of optimization and
regularization methods. Given the ad-hoc nature of network architecture design, it would be useful if the
optimization led to a sparse solution so that one could ascertain the importance or unimportance of various
parts of the network architecture. Of course, historically, sparsity has always been a useful notion for in-
verse problems where researchers often prefer the L1 norm over L2. Similarly for control, one often includes
the control variables in the objective function in order to minimize their efforts. Motivated by the design
and training of neural networks, we propose a novel column space search approach that emphasizes the
data over the model, as well as a novel iterative Levenberg-Marquardt algorithm that smoothly converges
to a regularized SVD as opposed to the abrupt truncation inherent to PCA. In the case of our iterative
Levenberg-Marquardt algorithm, it suffices to consider only the linearized subproblem in order to verify our
claims. However, the claims we make about our novel column space search approach require examining the
impact of the solution method for the linearized subproblem on the fully nonlinear original problem; thus,
we consider a complex real-world inverse problem (determining facial expressions from RGB images).

Keywords: Machine learning, Levenberg-Marquardt, principal component analysis, column space search,
coordinate descent

1. Introduction1

The current age of deep learning began (at least according to the Turing Award committee1) with works2

addressing problems such as object classification [73, 82], reading handwritten digits and documents [80,3

81, 79], and speech recognition and natural language tasks [11, 100]. Although models based on traditional4

scientific first principles do not exist for these sorts of problems, the underlying machine learning methods5

have been permeating into various scientific communities, including computational physics [69, 51, 49, 123,6

48, 89, 113, 115, 132]. Perhaps the main difference between the use of machine learning for customizing7

advertisements [19, 55], online dating [36, 99], or self-driving cars [16, 67] and its use in computational8

physics is that our community has developed a fairly reasonable scientific and mathematical understanding9

of many of the problems of interest via a combination of theoretical, experimental, and computational10

approaches, especially as opposed to the ad-hoc data-driven nature of popular machine learning application11

areas. Unfortunately, ad-hoc approaches leave neural networks wide open to adversarial attacks [65, 3, 125],12

which does not bode well for predictive numerical capabilities. Therefore, one goal of our community (and13

perhaps contribution) would be to better understand neural network architectures in order to provide a more14

thorough and rigorous approach to designing them, similar to the contributions that the applied mathematics15

∗dabh@math.ucla.edu, UCLA
∗∗mikebao@stanford.edu, fedkiw@cs.stanford.edu, Stanford University
1https://awards.acm.org/about/2018-turing

Preprint submitted to Journal of Computational Physics

community made to finite element simulation, e.g. reformulating spring and beam elements as basis functions16

[141, 142].17

Techniques used in modeling and training neural networks are highly related to well-studied approaches18

for inverse problems and control. To understand some of the differences between inverse problems, control,19

and training neural networks, consider Y = f (X;C), with input X, output Y , and function parameters C.20

In a typical inverse problem, one is given Y and aims to find an X that produces Y . Poor conditioning of the21

function f or noise in the given/desired output Y can lead to spurious information contained in X. Thus,22

various regularization approaches may be used to ascertain an X with a high signal-to-noise ratio, see for23

example [26, 92, 131, 140] and the more general references [42, 39, 12]. In the control problem, X and Y are24

both given, and the goal is to ascertain some subset of the function parameters C that allows one to coerce25

X toward Y . Typically, most of f is a well-known function, such as the Navier-Stokes equations, and thus26

the added controls should have a light/minimal touch; therefore, they are often included in the objective27

function so that their magnitude/effort is minimized. This too is regularization, and needs to be done wisely28

so that minimizing controls does not prevent one from hitting the target (while still considering signal-to-29

noise ratio, etc.), see e.g. [70, 2, 118]. When considering neural networks, the function f is almost entirely30

ad-hoc, and one does not know which parameters might have physicality and which are more arbitrary.31

Thus, it becomes even more important to consider careful regularization with the hope that some of the32

coefficients will dominate others, providing some insight into which portions of the network architecture may33

have some basis in first principles as opposed to which may be considered for removal/replacement, see e.g.34

[137, 95, 138, 133, 54, 90, 60, 93, 102, 134, 56, 109, 85, 4, 57, 58]. Because so little is known about f , neural35

networks cannot proceed with one input X and one output Y as can a control problem. Instead, one requires36

a family of given (X;Y) pairs called training data, before an attempt to identify the function coefficients37

C can be made. Methods for formulating and optimizing neural networks are typically significantly more38

rudimentary and ad-hoc than those designed for inverse and control problems, relying on simple methods such39

as gradient descent and stochastic gradient descent (SGD) or ordinary differential equation discretizations40

of gradient flow, such as Adam [72], AdaGrad [37], Nesterov [103], momentum methods [114, 126], etc.41

[117, 17, 53].42

The process of network architecture design is often motivated by heuristics that hinder the ability to43

subsequently train the network and find suitable coefficients. For example, the “all or none” property of bio-44

logical neurons leads to discontinuous functions with identically zero derivatives almost everywhere, which is45

disastrous for optimization/training [98]. The idea that biological neurons fire with increased frequency for46

stronger signals leads to piecewise linear functions with discontinuous derivatives, also problematic for opti-47

mization. These Heaviside and rectifier/ReLU [53] models require smoothing before they can subsequently48

be used with numerical optimization. It seems quite dubious to design and analyze non-smooth network49

architectures that are later smoothed in the first significant digit when deployed in practice, especially given50

the nuances exposed by the numerical analysis community regarding the differences between continuous and51

discrete formulations (e.g. [61]) even when such occurs only at the level of machine precision (the 7th or 15th
52

decimal place). This motivates our aim to better utilize various approaches to regularization and sparsity to53

ascertain the importance of various components of the network architecture.54

In Section 2, we introduce a suitably complex model problem for demonstrating the numerical methods55

presented in the paper: determining facial expression from RGB images. This problem is both algorithmi-56

cally challenging and grounded in physics, meaning that we can attempt to develop algorithms which find57

semantically meaningful solutions in terms of known physical and anatomical properties. In Section 3, we58

outline a general framework for optimization, showing how neural network training is recast as a nonlinear59

optimization problem. We highlight various approximations made in practice during this process, such as60

(sometimes drastic) approximations to the Hessian and Jacobian. As is typical, rank-one updates are dis-61

cussed, which motivates the singular value decomposition (SVD) and principal component analysis (PCA),62

both of which are used in subsequent sections. Section 4 presents a novel iterative Levenberg-Marquardt63

[83, 97] scheme that is shown by proof and experiment to converge smoothly (and monotonically) to a regular-64

ized SVD, unlike the truncation typical of a PCA approach. Section 5 presents a novel column space search65

technique that focuses more on the data term than the model, again an improvement over PCA. Moreover,66

we explain how column space search enables the discovery of sparse and semantically meaningful solutions67

to fully nonlinear optimization problems. To demonstrate this experimentally, we compare to alternative68

strategies such as Dogleg [112, 94] and BFGS with L2 or soft L1 regularizers.69

2

2. Tackling Complex Real-World Inverse Problems for Faces70

We chose a fairly complex model problem which is still cutting-edge in order to illustrate the need71

for robust and efficient approaches. Specifically, we consider an inverse problem where a two-dimensional72

RGB image of a human face is processed to determine facial expressions in terms of a three-dimensional73

parameterized model with a semantic, anatomical basis. This inverse problem is useful throughout industries74

such as medicine, surveillance, intelligence gathering, entertainment, etc. Similar to many other complex75

processes, one can understand the problem via a pipeline with various function layers, see Figure 1.76

X1 f1 (X1, C1) f2 (X2, C2) f3 (X3, C3)

f̂ (X4) = ||X4 − Xtarget||

C1

X2 X3 X4

C2 C3

input input inputoutput output output

params params params

Figure 1: Multiple layers of functions fi map an initial vector of inputs X1 to a final output X4, which is evaluated with
an objective function f̂ . Vectors of parameters Ci may either be prescribed or be determined via experimentation or neural
network training.

The inverse problem seeks to find an X1 that outputs an X4 as close to Xtarget as possible, i.e. minimizing77

f̂ (X4), using regularization to combat noise and overfitting when necessary. Using classical optimization,78

this requires differentiation that can be expressed as79

∂f̂

∂X1
=

∂f̂

∂X4

∂f3 (X3, C3)

∂X3

∂f2 (X2, C2)

∂X2

∂f1 (X1, C1)

∂X1
, (1)

implying that every function layer requires differentiability with respect to its inputs. Now suppose that80

f2 (X2;C2) represented a neural network layer that needs to be trained in order to ascertain reasonable81

parameters C2. In order to do this, one would consider a large number K of known training pairs of the82

form
(
Xk

1 ;Xk
target

)
; however, notationally, one may stack all the training pairs into a single X1 and Xtarget,83

at least conceptually (for the sake of exposition). Then the required differentiation is84

∂f̂ (X4)

∂C2
=

∂f̂

∂X4

∂f3 (X3, C3)

∂X3

∂f2 (X2, C2)

∂C2
, (2)

highlighting the notable differences as compared to an inverse problem. Firstly, any pre-process, such as f185

here, does not require differentiability and can utilize any known procedural methods. In fact, one might86

use an f1 based on first principles aiming to solve the problem outright, and then supplement the results87

with the composition of f2 and f3 in order to better match real-world data. This means that data-driven88

neural network approaches may be added on top of any existing codebase, whether it is differentiable or89

not. Secondly, any post-process for the neural network, such as f3, only requires as much differentiability as90

would be required for f3 if it were included in a typical inverse problem. Thirdly, the neural network itself,91

f2, does not require the usual differentiability inherent to inverse problems, but only requires differentiability92

with respect to its parameters C2.93

Most facial pipelines take as input a set of parameters that govern the shape/geometry of a three-94

dimensional face, as given by triangle vertex positions. For example, a blendshape facial rig (see e.g. [84])95

describes how a face is deformed from a neutral rest state n in terms of a linear combination of basis96

facial shapes, e.g. semantic basis vectors which represent particular expressions such as “smile” or “yawn.”97

The basis facial shapes are often acquired using dense performance capture (see e.g. [9, 10, 20, 50]) or via98

sculpting by an artist/modeler [30, 75]. A typical high-quality blendshape rig contains hundreds of basis99

shapes corresponding to different expressions between which one can interpolate (see e.g. [29]). Once a100

blendshape model is obtained, stacking each blendshape into a column of a matrix B allows one to define101

the facial geometry as n + Bb(w), where the vector b contains a degree of freedom for each blendshape102

and w represents a set of meaningful controls (b(w) may be nonlinear, but should be smooth). In order to103

3

avoid linearized rotation artifacts due to rotational jaw motion [32, 121, 143], one typically hybridizes the104

linear blendshape system with skinning/enveloping (see e.g. [96, 76]), which blends together the nonlinear105

six-degree-of-freedom rigid body transformation from the skull and jaw. Each triangle vertex is assigned106

weights that dictate the relative influence of the skull and jaw such that vertices far from the jaw move with107

the skull, vertices far from the skull move with the jaw, and vertices in between move in a blended fashion.108

This can be written compactly as a matrix T (j(w)), where the controls w drive the six-degree-of-freedom109

rigid body offset j of the jaw from the skull and T assembles all the transformations and weights so that one110

may write111

x(w) = T (j(w))(n+Bb(w)), (3)

where x(w) are the triangle vertex positions of the face surface. Importantly, as long as the dependencies in112

Equation 3 are chosen carefully (in a smooth enough manner), then x is differentiable with respect to w.113

As an alternative to blendshape approaches, one can construct an anatomically motivated finite element114

facial model based on soft tissue, musculature, and underlying skeletal structures (see e.g. [121, 122]). In115

[121], the vertex positions are differentiable as a function of the muscle activations and jaw parameters, and116

the authors used this differentiability to solve inverse problems. However, since anatomical facial models117

rely on MRI, CT scans, etc., it is difficult to make an accurate model; therefore, [121, 122] struggled to118

express the wide variety of shapes possible with a blendshape system. Thus, [31] augmented the results of119

[121] using a three-dimensional morphing process in order to derive target locations for muscles. Although120

the method proposed in [31] regains the expressivity of a blendshape system, their morphing process lacked121

differentiability. Later, [7] noted that the morphing process could be made differentiable, but that this would122

require a mapping from each surface vertex to all other affected vertices in the simulation mesh, which is123

quadratic complexity and thus impractical. Instead, [7] parameterized the morph with a standard blendshape124

system, so that the parameters b drive the morph, resulting in linear complexity. This was implemented125

(in [7]) by simulating the anatomical mesh for each blendshape (using the morphing from [31]) in order to126

create the muscle shapes needed in order to define a blendshape system for the muscles themselves; then,127

the three-dimensional target shape of each muscle can be specified by the parameters w, with each muscle128

tetrahedron vertex x(w) defined along the lines of Equation 3. Manipulating w determines a blendshape129

for each muscle, which is then targeted with the anatomical finite element simulation from [31] and [121],130

see Figure 2. Notably, the resulting scheme is fully differentiable and hence can be used to solve inverse131

problems.132

Figure 2: (Left) Skull and jaw (gray) with anatomical muscle shapes (red). (Right) Corresponding surface of the tetrahedral
finite element mesh simulated from the targeted muscle shapes.

Given target geometry for the three-dimensional face surface, one can specify an energy that minimizes133

the distance between the target and the parameterized model, and then solve an inverse problem for the134

parameters w that drive the b and j for the muscle blendshape system, which in turn drives the quasistatic135

finite element simulation of [121] augmented by [31] in order to match the target (see [7] for details). In order136

to match a two-dimensional RGB image, one needs to render the resulting geometry with a differentiable137

renderer along the lines of [88, 91] and utilize an energy that considers the difference in pixel colors. Then,138

one can solve an inverse problem for the controls w that drive the blendshape muscles which in turn drive the139

4

finite element simulation which results in the surface mesh that is rendered into pixel colors that minimize140

the energy. Unfortunately, as shown in Figure 3 Left, differentiable renderers don’t typically have the same141

quality as a photorealistic renderer or photograph, so aiming to match pixel colors is overly optimistic. To142

overcome this limitation, [6] proposed processing both the image and the differentiable render with a pre-143

existing/widespread face landmark detector neural network, such as 2D/3D-FAN [24] (see Figure 3). These144

networks were trained with vast amounts of hand-labeled data so that they could find keypoint/landmark145

positions from images regardless of texture, geometry, shading, lighting, shadows, etc. As such, the poor146

rendering quality of a differentiable renderer is also serendipitously ignored by these neural networks. In147

summary, [6] utilizes an energy that computes the difference between keypoints/landmarks, and solving the148

inverse problem requires differentiating through the keypoint detector neural network (2D/3D-FAN), the149

differentiable renderer, and the quasistatic finite element muscle simulation.150

Figure 3: Results of a machine-learning based facial keypoint detector such as 2D/3D-FAN [24] on a synthetic render (left) as
well as the corresponding photograph (right).

Figure 4: (Left) A pose of the hybridized muscle system of [7] depicted on top of the corresponding target RGB photograph.
Whiter muscle shapes correspond to more activated muscles. (Middle) The corresponding blendshape weights. (Right) The
corresponding muscle activations.

Figure 4 illustrates results typical of this process. Figure 4 (Middle) shows the value of b along the vertical151

axis for each blendshape on the horizontal axis. In spite of the expression in Figure 4 (Left) being not that152

5

complex, many blendshapes have non-zero values; worse yet, successive frames in a video produce noisy153

uncorrelated blendshape values that are hard to interpret as meaningful semantic information. In contrast,154

Figure 4 (Right) illustrates that the muscle activations are sparser and more indicative of the image; in155

fact, successive frames tend to be highly correlated, allowing one to separate semantic information from156

noise. Generally speaking, sparse semantic solutions to inverse problems are obviously preferred over dense,157

noisy, temporally uncorrelated results. This goal of ascertaining sparser semantic information motivates our158

considerations throughout the rest of the paper.159

3. Optimization Framework160

Whether it be the search for viable inputs for an inverse problem, minimizing some measure of effort for161

a control problem, or the determination of network architecture parameters that allow a neural network to162

well-match training data, these problems all take the form of an optimization minimizing a cost function163

f̂(c) over parameters c. Importantly, one typically has certain conditions in mind to which c should be164

subject. For example, one might want c close to a prior/initial guess, one might desire the norm of c to165

be small, and/or one might want c sparse so that it carries interpretable semantic meaning. In particular,166

as noted above, it would be useful if neural network training resulted in a sparse c in order to identify167

unnecessary/unimportant components of the network architecture.168

Either in the absence of constraints or with constraints and suitable Lagrange multipliers, the minima of169

f̂ occur at critical points where the (column vector) Jacobian F (c) = JT
f̂

(c) = ∇f̂(c) = 0 . Since F (c) = 0170

is (generally) a nonlinear system of equations, one typically linearizes the system by taking the first two171

terms of the Taylor expansion about a point c∗, F (c) ≈ F (c∗) +F ′(c) (c− c∗) where F ′(c) = JF (c) = HT
f̂

(c)172

is the transpose of the Hessian of f̂ . Newton’s method uses this relationship to write F
(
cq+1

)
− F (cq) =173

F ′ (cq) ∆cq, where ∆cq = cq+1−cq and q represents the current iteration. Then, one solves the linear system174

F ′ (cq) ∆cq = βF (cq) − F (cq) to update cq+1 = cq + ∆cq where β ∈ [0, 1), and using β 6= 0 more slowly175

shrinks F (cq) towards 0. Alternatively, one can utilize ∆cq merely as a search direction and subsequently176

employ a number of one-dimensional approaches, e.g. bisection search, golden section search, etc.177

While Newton’s method and similar techniques are reasonably well-justified and often converge well178

in practice, they depend on access to various derivatives of the cost function f̂(c). To compute these179

derivatives, one may utilize symbolic/analytic differentiation, finite differences, or automatic differentiation180

(e.g. backpropagation). Automatic differentiation is often preferred in the context of training neural networks181

both because of its ease of implementation as well as its availability via various software packages (e.g.182

Tensorflow [1], Caffe [71], PyTorch [110], Theano [127], etc.); however, roundoff and other errors generally183

accumulate proportional to the size of the network, which can turn out to be numerically catastrophic.184

Moreover, high dimensionality makes the computation and storage of HT
f̂

impractical, and thus practitioners185

typically resort to quasi-Newton methods that aim to avoid direct consideration of second derivatives.186

Broyden’s method [21] for solving nonlinear systems, in the context of optimization, first approximates187 (
HT
f̂

)0

= I, and then iteratively uses rank-one updates aiming for successively better estimates. Each188

iteration, one solves
(
HT
f̂

)q
∆cq = −JT

f̂
(cq) to find a search direction ∆cq, and then uses line search to find189

cq+1; subsequently, ∆cq is updated via ∆cq = cq+1− cq. Given
(

∆JT
f̂

)q
= JT

f̂

(
cq+1

)
−JT

f̂
(cq), the rank-one190

update is191 (
HT
f̂

)q+1

=
(
HT
f̂

)q
+

1

(∆cq)
T

∆cq

((
∆JT

f̂

)q
−
(
HT
f̂

)q
∆cq

)
(∆cq)

T
(4)

so that
(
HT
f̂

)q+1

∆cq =
(

∆JT
f̂

)q
. When c is of large dimension, forming and inverting the dense O

(
n2
)

192

HT
f̂

is undesirable, especially considering that the approximation is built from rank-one updates, and thus193

a matrix-free approach to the action of H−T
f̂

on a vector is preferred. That is, ∆cq = −
(
H−T
f̂

)q
JT
f̂

(cq) is194

used to find the search direction for the line search used to determine cq+1, which is used to update ∆cq and195

6

(
∆JT

f̂

)q
; then, rank-one update for H−T

f̂
is196

(
H−T
f̂

)q+1

=
(
H−T
f̂

)q
+

(
∆cq −

(
H−T
f̂

)q (
∆JT

f̂

)q)
(∆cq)

T
(
H−T
f̂

)q
(∆cq)

T
(
H−T
f̂

)q (
∆JT

f̂

)q , (5)

so that
(
H−T
f̂

)q+1 (
∆JT

f̂

)q
= ∆cq. Other low-rank update methods such as SR1 [33, 22], DFP [33, 46], and197

BFGS [23, 44, 52, 119] are similar in spirit. In particular, the limited-memory L-BFGS [106] only stores the198

past several low-rank updates making it quite efficient, see e.g. [78, 34].199

Instead of performing rank-one updates to improve upon
(
HT
f̂

)0

= I as in Broyden-style methods,200

gradient descent methods simply use HT
f̂

= I so that the search direction is obtained trivially via ∆cq =201

−JT
f̂

(cq) = −∇f̂ (cq). When problems have high dimensionality, practitioners often make further simplifi-202

cations such as evaluating only a subset of the right-hand side (mini-batch gradient descent) or even just203

one or a few randomly-selected entries at a time (SGD), see e.g. [117, 18]. One can even ignore the search204

direction equation entirely by choosing ∆cq to be various basis vectors, i.e. coordinate descent [120]. Fur-205

thermore, gradient descent methods can be envisioned as forward Euler approximations of gradient flow,206

i.e. of dc(t)
dt = −∇f̂ (c(t)), which allows for the wealth of knowledge in designing and solving ordinary differ-207

ential equations to be utilized. For instance, adaptive time stepping leads to such techniques as AdaGrad208

[37], which utilizes separate learning rates (time steps) for each parameter, or AdaDelta [139] and RMSprop209

[129], both of which lessen the effects of history terms in AdaGrad in order to maintain a sufficiently positive210

learning rate to avoid stalling. Incorporating the effects of prior search directions and state updates can211

be seen as utilizing momentum, which rewrites gradient flow using Newton’s Second Law [114]. The Adam212

method [72] combines the notion of using a moving average of gradients as in momentum methods with an213

adaptive learning rate for each parameter. The 52,000+ citations2 of [72] indicate the success practitioners214

have enjoyed with Adam, often finding that it converges faster than SGD.215

4. Iterative Levenberg-Marquardt216

When training a neural network on data (xi, yi), one seeks to find the parameters c of a generally vector-217

valued function f(x, y, c) that minimize error over the training data, i.e. one desires ||f (xi, yi, c) || to be218

close to zero for all i. Choosing the L2 norm leads to minimizing f̂(c) = 1
2

∑
i f (xi, yi, c)

T
f (xi, yi, c) =219

1
2 f̃

T (c)f̃(c), which is a nonlinear least squares problem [14]. Critical points have JT
f̂

(c) = JT
f̃

(c) f̃ (c) = 0,220

which can be rewritten using the Taylor expansion of f̃(c) about cq as JT
f̃

(c)
(
f̃ (cq) + Jf̃ (cq) ∆cq + · · ·

)
= 0,221

where ∆cq = c−cq. Dropping high-order terms and evaluating JT
f̃

at cq leads to the Gauss-Newton equations222

JT
f̃

(cq) Jf̃ (cq) ∆cq ≈ −JT
f̃

(cq) f̃ (cq), which imply an estimate of HT
f̂

(cq) ≈ JT
f̃

(cq) Jf̃ (cq), see e.g. [107].223

Notably, the Gauss-Newton approximation to the Hessian only requires first derivatives. Moreover, since the224

Gauss-Newton equations are the normal equations for Jf̃ (cq) ∆cq = −f̃ (cq), one can obtain ∆cq via any225

least squares and minimum norm approach for solving this much better conditioned set of equations.226

When Jf̃ is poorly-conditioned or rank-deficient, one can regularize the Gauss-Newton equations via227 (
JT
f̃

(cq) Jf̃ (cq) + ε2I
)

∆cq = −JT
f̃

(cq) f̃ (cq) with ε > 0, which is referred to as Levenberg-Marquardt or228

damped nonlinear least squares, see e.g. [83, 97, 107, 14]. This makes a tradeoff between solvability and229

accuracy, since the unique and least squares components of the solution will be perturbed away from their230

correct values. To illuminate this, consider stacking a general linear system Ac = b with the full-rank εIc = 0231

to obtain232 (
A
εI

)
c =

(
b
0

)
, (6)

2as of September 2020, according to Google Scholar

7

which has equivalent normal equations of
(
ATA+ ε2I

)
c = AT b. Using the SVD, A = UΣV T , this becomes233 (

ΣTΣ + ε2I
)
ĉ = ΣT b̂ where ĉ = V T c and b̂ = UT b. For a general A, Σ has the form234

Σ =

(
Σ̂ 0
0 0

)
, (7)

where Σ̂ is diagonal and full-rank. This leads to235 ((
Σ̂T 0
0 0

)(
Σ̂ 0
0 0

)
+ ε2I

)(
ĉr
ĉz

)
=

(
Σ̂T 0
0 0

)(
b̂r
b̂z

)
, (8)

where ĉ and b̂ have been decomposed to separate out the portions that correspond to identically-zero sub-236

matrices of ΣT . Equation 8 sets ĉz identically equal to zero as desired (i.e. minimum norm solution), but237

the entries in ĉr are determined via238

ĉk =
σk

σ2
k + ε2

b̂k =

(
σ2
k

σ2
k + ε2

)
b̂k
σk
, (9)

perturbing them away from their correct unique or least squares solution ĉk = b̂k/σk. This perturbation is239

negligible for σk � ε, but smaller σk have their associated ĉk more significantly incorrectly perturbed toward240

zero. One typically chooses ε so that it does not interfere too much with the larger (more important) singular241

values, while still being large enough to regularize numerical issues associated with smaller σk (as well as242

identically zero singular values). As a side note for weighted least squares, one adds the full-rank εDc = 0243

(with diagonal D) instead of εIc = 0 to obtain a modified version of Equation 6, which after column scaling244

becomes245 (
AD−1

εI

)
Dc =

(
b
0

)
. (10)

Then, a simple renaming of variables results in the original Equation 6, and the above analysis applies246

without modification.247

Motivated by the Broyden-style iterative methods (discussed in the previous section) which began with248

a simple guess for the Hessian and then corrected it after each iteration, we propose a similar strategy for249

Levenberg-Marquardt. That is, we start with εIc = 0 but subsequently update the right-hand side as the250

iteration proceeds, progressively removing the erroneous perturbation of the least squares solution shown in251

Equation 9. Our approach converges to the exact solution for larger singular values, as for example would252

also be achieved using PCA; however, unlike the all-or-nothing approach of PCA, our approach smoothly253

tapers between the exact solution for larger σk and robust regularization for smaller σk.3254

We start with a guess c∗ for c and stack Ac = b with εIc = εc∗ leading to the normal equations255 (
ATA+ ε2I

)
c = AT b+ ε2c∗. (11)

Substituting the SVD of A leads to256 (
ΣTΣ + ε2I

)
ĉ = ΣT b̂+ ε2V T c∗ = ΣT b̂+ ε2ĉ∗. (12)

where ĉ∗ = V T c∗. This modified version of Equation 8 sets ĉz equal to ĉ∗z, while the entries in ĉr are257

determined via258

ĉk =

(
σ2
k

σ2
k + ε2

)
b̂k
σk

+

(
ε2

σ2
k + ε2

)
ĉ∗k (13)

illustrating that ĉk is a convex combination of the exact solution b̂k/σk and the initial guess ĉ∗k. When259

σk � ε, the associated ĉk tend toward the correct solution as usual. When σk � ε, the associated ĉk tend260

toward ĉ∗k.261

3This method/proof was derived for a CS205L lecture at Stanford in Winter quarter 2019 [41].

8

Starting with a guess of c∗ = 0, one obtains ĉ∗ = 0 and thus ĉ∗z = 0 and ĉz = 0 as desired. In addition,262

ĉ∗r = 0 and Equation 13 is identical to Equation 9. Multiplying by V transforms ĉ back to the c that would263

result from solving Equation 11. Setting c∗ equal to this newly obtained value of c and repeating the above264

analysis maintains ĉz = 0 (as desired), while265

ĉ∗k =

(
σ2
k

σ2
k + ε2

)
b̂k
σk

(14)

so that Equation 13 becomes266

ĉk =

(
σ2
k

σ2
k + ε2

)
b̂k
σk

+

(
ε2

σ2
k + ε2

)(
σ2
k

σ2
k + ε2

)
b̂k
σk

=

(
1 +

(
ε2

σ2
k + ε2

))(
σ2
k

σ2
k + ε2

)
b̂k
σk
. (15)

Repeating the entire process again results in

ĉk =

(
σ2
k

σ2
k + ε2

)
b̂k
σk

+

(
ε2

σ2
k + ε2

)(
1 +

(
ε2

σ2
k + ε2

))(
σ2
k

σ2
k + ε2

)
b̂k
σk

=

(
1 +

(
ε2

σ2
k + ε2

)
+

(
ε2

σ2
k + ε2

)2
)(

σ2
k

σ2
k + ε2

)
b̂k
σk
,

(16)

and further iterations give267

ĉk =

(
1 +

(
ε2

σ2
k + ε2

)
+

(
ε2

σ2
k + ε2

)2

+

(
ε2

σ2
k + ε2

)3

+ · · ·
)(

σ2
k

σ2
k + ε2

)
b̂k
σk
, (17)

where the term in parentheses is a geometric series with r = ε2

σ2
k+ε2

.268

Since the geometric series in Equation 17 converges to 1
1−r =

σ2
k+ε2

σ2
k

, Equation 17 converges to the exact269

solution ĉk = b̂k/σk. Any practical numerical method will only take q steps, leading to the partial sum270

1− rq
1− r =

σ2
k + ε2

σ2
k

(
1−

(
ε2

σ2
k + ε2

)q)
, (18)

which yields271

ĉk =

(
1−

(
ε2

σ2
k + ε2

)q)
b̂k
σk
. (19)

The scalar term premultiplying b̂k/σk monotonically approaches 1 as the iteration proceeds, and thus each272

ĉk converges monotonically to the exact solution and converges more quickly for larger σk as desired.273

4.1. Examples274

Typical inverse, control, and learning problems involve numerically challenging data, where linear sub-275

problems may have coefficient matrices with both small and identically zero singular values and the right-276

hand side may not be in the range of the coefficient matrix. Accordingly, we evaluate our approach against277

these types of problems. Here, we compare our iterative Levenberg-Marquardt (iLM) approach to PCA278

because PCA is a widely applied and well-understood algorithm. Since our goal is merely to demonstrate279

the feasibility of iLM, we utilize straightforward Matlab implementations of both methods. For iLM, we280

solve Equation 11 using Matlab’s pcg routine with no preconditioner, i.e. conjugate gradients. For PCA,281

we compute the largest singular values and corresponding singular vectors using Matlab’s svds function,282

which finds these quantities via either Lanczos bidiagonalization [5, 77] or a computation of the full SVD283

depending on the number of singular vectors desired. All experiments were run on a workstation equipped284

with Matlab R2020a, 128GB RAM, and a 24-core Intel CPU running at 3.00GHz.285

First we consider rather large dense matrices and compare PCA and iLM for a varying number of singular286

values, noting that an increased number of iLM iterations is required for increased accuracy. We generate287

9

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Components Sought

0

10

20

30

40

50
T

im
e

 (
s
e

c
o

n
d

s
)

PCA

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Components Sought

0

10

20

30

40

50

T
im

e
 (

s
e

c
o

n
d

s
)

PCA

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

Figure 5: Performance of iLM and PCA for estimating an increasing number of ĉk given a dense 5,000×5,000 square matrix with
25 million randomly-generated entries (post-processed to have 100 zero singular values) and a randomly-generated right-hand
side not in its range. We observed deleterious behavior of the Matlab software for an intermediate range of sought components4;
however, a better-devised approach would obviously not rise above the hashed line drawn in the figures. Five experiments were
run for each number of components tested, and solid lines are drawn through the median results. (Left) ε = 0.1. (Right) ε = 5.0.
Increased regularization slows convergence for singular values that are very small compared to ε, as expected (see Figure 6).

five random dense 5,000×5,000 matrices (each post-processed to have 100 zero singular values) as well as288

random right-hand sides outside the range of the coefficient matrix. Then, we estimate various numbers of289

components of ĉ, noting that in typical applications one seeks only a small number of components. While290

PCA estimates these components “exactly” up to numerical precision, the accuracy of iLM is limited by291

regularization (i.e. ε) and the tolerance of the CG solver. The number of iLM iterations is chosen so that292

the relevant ĉk are within 10%, 1%, or 0.1% of the ĉk obtained via PCA in the L∞ norm; this required CG293

solver tolerances of 1e-7, 1e-8, and 1e-10, respectively. Results are shown in Figure 5. Data from each of294

the five trials are plotted as circles, and the median results across the five trials are connected by solid lines.295

The hashed line represents the approximate time taken to compute the SVD of the coefficient matrix. The296

number of iLM iterations required for the median results for each level of accuracy are plotted in Figure 6.297

To help clarify the required CG tolerance for iLM, we plot in Figure 7 the tolerance required to obtain each298

level of accuracy for one of the five trials.299

We also consider how iLM and PCA perform for a fixed number of desired ĉk as the size of the coefficient300

matrix increases. We let size vary from 1,000×1,000 to 10,000×10,000 and seek 500 components, creating a301

random dense matrix (post-processed to have 100 zero singular values) and random right-hand side not in302

the range of the coefficient matrix. For iLM, we iterate (as before) until the L∞ norm of the vector of ĉk is303

within 10%, 1%, or 0.1% of that obtained via PCA, using a CG tolerance of 1e-7, 1e-8, or 1e-10, respectively.304

The results are shown in Figure 8.305

The aforementioned tests are unfair to iLM because they stringently require iLM to do as well as PCA306

on the values PCA estimates nearly exactly while ignoring the fact that PCA obtains totally inaccurate307

(identically zero) solutions for all the other ĉk. To illustrate the added benefit of smooth convergence308

obtained via iLM, we construct a small (to make the graphs easier to read) 100× 100 random matrix with309

ten of its singular values set to zero (see Figure 9). A random right-hand side b outside the range of A is310

then formed. Figures 10 and 11 show the results of iLM and PCA, illustrating how well the obtained σk ĉk311

reconstruct the projected right-hand side b̂k. iLM leverages rich information about the structure of A even312

when ε is larger than the largest singular value of A (substantial regularization). In these experiments we313

used a CG tolerance of 1e-6 and a maximum of 1000 CG iterations.314

4We observed that, by default, Matlab seems to wait too long to switch from Lanczos bidiagonalization to computing the
full SVD.

10

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Components Sought

0

5

10

15

20

N
u

m
b

e
r

o
f

L
e

v
e

n
b

e
rg

-M
a

rq
u

a
rd

t
It

e
ra

ti
o

n
s

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

Figure 6: Number of iterations required for iLM for the medians of the trials in Figure 5 (Right) with ε = 5.0. (When ε = 0.1,
iLM mostly converges to the desired tolerance in one iteration.)

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Components Sought

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

L
o

g
 o

f
R

e
q

u
ir
e

d
 C

G
 T

o
le

ra
n

c
e

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

500 1000 1500 2000 2500 3000 3500 4000 4500

Number of Components Sought

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

L
o

g
 o

f
R

e
q

u
ir
e

d
 C

G
 T

o
le

ra
n

c
e

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

Figure 7: Using iLM, as more ĉk are sought or as more accuracy is desired, a tighter CG tolerance needs to be used to prevent
convergence from stalling. Plotted are the experimentally-determined maximum CG tolerances which yielded convergent results,
ranging from 100 to 4500 ĉk sought. (Left) ε = 0.1. (Right) ε = 5.0.

11

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

T
im

e
 (

s
e

c
o

n
d

s
)

PCA

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

T
im

e
 (

s
e

c
o

n
d

s
)

PCA

iLM 0.1% Error

iLM 1% Error

iLM 10% Error

Figure 8: Performance of iLM and PCA for estimating a fixed number of ĉk (500 of them) given a dense n× n square matrix
with n2 randomly-generated entries (post-processed to have 100 zero singular values) and a randomly-generated right-hand side
not in its range. (Left) ε = 0.1. Only one iLM iteration is required for these trials, and hence the growing cost is a combination
of the increased cost per CG iteration and the number of CG iterations required. (Right) ε = 5.0. For large n, the added
regularization appears to aid in the convergence of CG.

10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

Figure 9: The singular values of the matrix used for the experiments shown in Figures 10 and 11. Ten of the singular values
are identically zero.

12

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

Figure 10: Convergence of iLM and PCA to the exact solutions using 1, 3, 5, 10, 50, and 100 iterations with ε = 0.1 for iLM
and 1, 3, 5, 10, 50, and 100 components for PCA, respectively. iLM converges quickly for ĉk associated with larger singular
values but takes additional iterations to converge for the smallest singular values due to the regularization. iLM and PCA are
both exact to numerical precision for the ĉk that should be identically zero (i.e. those in ĉz).

4.1.1. Comparisons for Nonlinear Optimization Problems315

The above examples demonstrate the utility of iLM when solving linear problems such as those that316

arise on each iteration of a standard nonlinear optimization algorithm. We now explicitly consider solving317

nonlinear optimization problems using iLM and related approaches.318

13

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PCA

iLM

Exact

Figure 11: Same as Figure 10 except with ε = 5.0. The increased regularization slows down iLM convergence, as expected.

We first consider an objective f(x1, x2) = x2
1 + 5x2

2 − 4 with an initial guess of x0 =
(
−3 −4

)T
. Figure319

12 shows the results of using Newton’s method, gradient descent, Levenberg-Marquardt, Fan’s modified320

Levenberg-Marquardt [40], and iLM to solve this problem. Each method is allowed to run until either the321

objective at the current iterate is within 10−6 of the analytic minimum value or until the L2 norm of the322

iterate changes less than 10−6 between iterations. All CG solves use a tolerance of 10−6 and a maximum323

of 1,000 iterations. Since the objective is quadratic, Newton’s method converges to the unique, global324

minimum in one iteration. Gradient descent, which lacks second-derivative information, oscillates around325

14

the (non-uniformly-scaled) energy landscape before eventually reaching the minimum. A learning rate of326

0.15 was used. Levenberg-Marquardt can be seen as blending between the Newton and gradient descent327

iterates. With little regularization (ε = 0.1), Levenberg-Marquardt looks similar to Newton’s method,328

while with a large regularization parameter (ε = 100.0), the number of iterations required for convergence329

significantly increases. The modified Levenberg-Marquardt of [40] can offer cubic convergence rates under330

suitable conditions by performing essentially two Levenberg-Marquardt steps on each iteration (a standard331

step and a forward-looking step based on the standard step). We implemented this method using the same332

parameters as in Section 4 of [40], except we used an initial µ0 of 10 in order to be similar to our regularization333

of the other Levenberg-Marquardt variants. Finally, we consider iLM using 1, 10, or 100 iterations, all with334

ε = 10.0 and using an initial guess of c∗ = 0. Note that iLM uses an ε2 rather than an ε scaling of the335

identity term, so ε = 10.0 is equivalent to ε = 100.0 with Levenberg-Marquardt. iLM converges to the336

Newton step (when the Newton step is defined) as the number of iterations increases, so iLM has a quadratic337

order of convergence in the best case; though of course, like Levenberg-Marquardt, gradient descent, etc., it338

is possible to design parameters and scenarios which make iLM converge poorly or not at all. Moreover, we339

stress that various strategies for adaptive learning rates and adaptive regularization terms may improve the340

performance of these methods. In particular, the adaptive parameter values used for our implementation341

of [40] are quite useful for aiding the convergence of the method, and in practice one would want to utilize342

adaptive regularization schemes for Levenberg-Marquardt and iLM as well (which would likely remove many343

of the small steps those algorithms take as they approach the solution).344

As a potentially greater challenge, we consider adding a third coordinate to our objective. We alter345

our initial guess to have a value of 1 along this direction. Since the objective function does not depend346

on this third component, it is possible for the solution iterate to drift along this additional axis, e.g. when347

regularization is perturbing the solution away from the true minimum. Newton’s method is not applicable in348

this case since the Hessian becomes singular, although iLM appears to converge to what Newton’s method349

would compute using the Hessian’s pseudoinverse. Interestingly, all methods appear to converge to the350

solution
(
0 0 1

)T
, rather than e.g. the minimum norm solution at the origin. We also consider rotating351

the objective and initial guess by 30 degrees about the x1 and x3 axes in order to make the null space of352

the Hessian less obvious. However, the optimization methods we tested still reach the minimum in the same353

number of iterations as reported in Figure 12, except for Newton’s method, which remains undefined.354

Further differences in the behavior and convergence of these optimization algorithms can be elucidated by355

considering the slightly modified objective f(x) = min
(
x2

1 + 5x2
2 − 4, (x1 + .1)2 + 5(x2 − .1)2 − 4

)
, which has356

minima at
(
0 0

)T
and

(
−.1 .1

)T
. With the same initial guess of x0 =

(
−3 −4

)T
, the nearest minimum357

in the L2 norm is the minimum-norm solution
(
0 0

)T
. However, if an algorithm does not proceed directly358

towards this solution, it may instead converge towards the other minimum with greater norm and less359

sparsity. This is demonstrated in Figure 13. Newton’s method converges in one step to
(
0 0

)T
. With360

enough iterations, iLM approximates the Newton step and also selects the minimum-norm solution. With361

fewer iterations, though, iLM behaves more like gradient descent and Fan’s modified Levenberg-Marquardt,362

which select the non-zero minimum. Standard Levenberg-Marquardt can be driven to select different minima363

by tuning the regularization parameter. In general, one must consider the types of solutions one seeks to364

an optimization problem (e.g., minimum-norm or sparse solutions) when selecting an algorithm and its365

parameters. Practical considerations like this and real-world performance tradeoffs can often overshadow366

theoretical convergence guarantees, as seen for example with the continued ubiquity of (stochastic) gradient367

descent.368

5. Column Space Search369

For the sake of motivation, consider the 2× 2 linear subproblem Ac = b where A =

[
1 −1
.1 1× 10−6

]
and370

b =
[
0 1

]T
. Although the right-hand side is in the range of A, it is not “easily” in the range of A; in371

other words, the columns of A are mostly orthogonal to b leading to a solution that utilizes large multipliers372

c1 = 1/(1× 10−6 + .1) and c2 = 1/(1× 10−6 + .1) on the columns of A. See Figure 14. Even though this373

is the exact solution to the linear subproblem, it misleadingly heavily weights columns of A that do not374

correlate well with the desired b. Large values of c1 and c2 seemingly indicate that those columns of A are375

15

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(a) Newton’s method: 1 iteration

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(b) Gradient descent: 23 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(c) LM (ε = 0.1): 3 iterations (d) LM (ε = 100): 205 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(e) Modified LM [40]: 5 iterations

(f) iLM (1 iteration): 205 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(g) iLM (10 iterations): 21 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(h) iLM (100 iterations): 3 iterations

Figure 12: Different algorithms applied to minimizing f(x1, x2) = x21 + 5x22 − 4 with an initial guess of x0 =
(
−3 −4

)T
.

Contours of the function are drawn and shaded by contour value. Arrows indicate steps taken on each iteration of the

optimization as the algorithm is allowed to converge to
(
0 0

)T
(the black x). The number of iterations required for each method

to converge to a tolerance of 10−6 is reported. We emphasize that these methods have different computational requirements;
for instance, a Levenberg-Marquardt (LM) step requires one linear solve, while an iteration of [40] requires two.

16

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(a) Newton’s method: 1 iteration

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(b) Gradient descent: 23 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(c) Levenberg-Marquardt (ε = 0.1): 3 iter-
ations

(d) Levenberg-Marquardt (ε = 100): 204
iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(e) Modified LM [40]: 5 iterations

(f) iLM (1 iteration): 204 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(g) iLM (10 iterations): 21 iterations

-3 -2 -1 0 1

-4

-3

-2

-1

0

1

2

0

20

40

60

80

(h) iLM (100 iterations): 3 iterations

Figure 13: Repeating the experiment of Figure 12 with an objective of f(x1, x2) =

min
(
x21 + 5x22 − 4, (x1 + .1)2 + 5(x2 − .1)2 − 4

)
. Algorithms converge to either

(
0 0

)T
(the black x) or to

(
−.1 .1

)T
(the

red star).

17

important, even though they mostly cancel each other out being nearly orthogonal to the right-hand side.376

The regularized least squares problem minc||b − Ac||22 + λ||c||22 reduces the values of c1 and c2, although it377

does not alleviate the fact that these columns mostly work to cancel each other out, making minimal progress378

towards b. At best, heavy regularization could drive c1 and c2 even further towards zero.379

As previously discussed, the columns of the linear subproblem are often quite erroneous approximations380

to the Hessian, which itself is only a linearization of the nonlinear problem; yet the linear subproblem is381

often solved and used to increment the solution vector (i.e. via cq+1 = cq + ∆cq). The original nonlinear382

problem may include significant noise and heavy regularization, and thus it seems more important to focus383

on controls that make direct progress towards energy/loss minimization than those that make only incidental384

progress while competing with and largely cancelling each other. Thus, we advocate dropping parameters385

from consideration when the gains made toward the solution by some combination of those parameters are386

incidental compared to the parameters’ main actions. As discussed previously, in regard to neural networks,387

this allows one to identify and differentiate which building blocks of the neural network are more or less388

important than others. In order to identify the more important parameters, we make note of two common389

misconceptions/flaws in the pursuit of solving linear subproblems. First, solving the linear subproblem390

exactly is not necessarily desirable since the columns of A may be terrible approximations to those of the391

Hessian, which itself is a linearization. Second, the largest singular values of A do not necessarily represent392

the most important features of the problem (as is assumed by typical PCA approaches); oftentimes, the393

more important notion is which columns of A are well-correlated with the right-hand side b, allowing one to394

make clean, non-competitive progress toward the solution.395

Next, consider the right-hand side b =
[
5 1

]T
, which is better correlated with at least one of the396

columns of A. See Figure 15. In this case, the exact solution in Figure 15b is an improvement over Figure397

14 (Right), but still contains problematic cancellation. The regularized solution shown in Figure 15c makes398

more progress towards the solution as compared to Figure 14 (Right), except it uses a lot more of a2 and a lot399

less of a1 than one might expect given how much better correlated a1 is with b. Regularization damps the use400

of a1 hindering its progress towards the solution; as such, a2 ends up being utilized significantly. One could401

obtain a better solution for this example by changing the regularization in the least squares problem to have402

the form minc||b− Ac||22 + λ1c
2
1 + λ2c

2
2 with λ1 = 0. Figure 15d shows the result for λ2 = 1 which is highly403

improved. One could do even better using only a1 as shown in Figure 15e, obtained using minc1 ||b− a1c1||22.404

For more discussion on various regularization strategies, especially pertaining to the facial expression inverse405

problem described in Section 2, see [15, 25, 86, 128, 13, 64, 136, 63, 87, 20, 68, 105].406

The aforementioned discussion motivates the notion of choosing only the columns of A which are most407

correlated with b. Such an approach can be implemented one column at a time using a basic coordinate408

descent algorithm [111]. Importantly, this allows one to circumvent null spaces without adding regularization,409

making coordinate descent an attractive option for use on ill-posed, poorly-conditioned problems. At each410

iteration, the column can be chosen stochastically [104] or deterministically. Popular deterministic methods411

for choosing the next search direction include cyclic coordinate descent [74], the Gauss-Southwell (GS) and412

Gauss-Southwell-Lipschitz rule [108], and the maximum block improvement (MBI) rule [28]. Instead of413

looking at a single column at a time, block coordinate descent can be used to update multiple columns414

simultaneously [130]; however, regularization may still be needed when the block of columns is poorly-415

conditioned or does not have full rank. See [120, 135] for more discussion. Typical coordinate descent416

algorithms may choose a large number of poorly correlated coordinates in place of a smaller number of more417

strongly correlated coordinates. Using correlation to choose the next coordinate to add to the model can418

alleviate this problem and is the central idea behind MBI [28], forward and backward stepwise regression [35],419

and LARS [38]. The latter statistical regression methods are often used to gain better prediction accuracy420

and interpretability of the model [59]. However, LARS converges to the least squares solution of the linear421

subproblem [38] because it eventually uses uncorrelated coordinates.422

In order to facilitate our goal of obtaining sparse, semantic solutions to optimization problems, particu-423

larly without adding unnecessary heuristic regularization which can lead to overfitting and error, we propose5
424

solving linear subproblems by first pruning away any coordinates that are geometrically uncorrelated with425

the right-hand side as motivated by least angle regression (LARS) [38]; then, we estimate the remaining426

5This approach was first proposed in the following preprint: [8].

18

−3 −2 −1 0 1 2 3

0.0

0.5

1.0 a1

a2

b

0 2 4 6 8 10

0

1

a1c1 (exact)
a2c2 (exact)

a1c1 (λ = .2)
a2c2 (λ = .2)

Figure 14: (Left) A visualization of the columns of A as well as b for the linear subproblem Ac = b from Section 5 when

b =
[
0 1

]T
. Note how the columns of A are mostly orthogonal to b. (Right) The exact solution utilizes quite large values of

c1 and c2, over-scaling largely competing columns of A in order to make progress towards b. Since the columns of A are often
poor approximations to the Hessian, and the Hessian itself is only a linearization of the nonlinear problem, it seems imprudent
to over-utilize controls c1 and c2 in order to make progress towards b. A regularized solution (with λ = .2) is also shown in the
figure. It does reduce the magnitudes of c1 and c2 but still demonstrates the same non-desirable competitive behavior between
the columns.

−4 −2 0 2 4

0

2
a1

a2

b

(a)

0 2 4 6 8 10

0

2
a1c1

a2c2

(b)

0 2 4 6 8 10

0

2
a1c1

a2c2

(c)

0 2 4 6 8 10

0

2
a1c1

a2c2

(d)

0 2 4 6 8 10

0

2
a1c1

(e)

0 2 4 6 8 10

0

2
a1c1

a2c2

(f)

Figure 15: (a) A visualization of A’s columns and b for the linear problem Ac = b from Section 5 when b =
[
5 1

]T
. (b) The

exact solution depicted by a1c1 and a2c2. (c) The regularized solution with λ = 1. (d) The regularized solution with λ1 = 0
and λ2 = 1. (e) The solution when solving for c1 only. (f) The solution obtained after a few iterations of coordinate descent
using the MBI selection rule.

coordinates via coordinate descent, eliminating the need to regularize for solvability.427

5.1. Pruning Geometrically Uncorrelated Directions428

We illustrate our approach, hereafter referred to as Column Space Search (CSS), by again consider-429

ing solving a generic nonlinear least squares optimization problem of the form minc||f(x, y, c)||22. Using430

a Gauss-Newton based method, every iteration of the optimization requires solving the linear subproblem431

JT
f̃

(cq) Jf̃ (cq) ∆cq = −JT
f̃
f̃ (cq) to find the ∆cq subsequently used to make progress towards the solution.432

Again, one may equivalently consider Jf̃ (cq) ∆cq = −f̃ (cq).433

We first compute the geometric correlation between each column ji of Jf̃ (cq) and the right-hand side434

−f̃ (cq). Similar to LARS [38] and MBI [28], we use |ĵi · f̃ (cq) |, where ĵi = ji/‖ji‖2. Poorly geometrically435

correlated columns can only make significant progress towards the solution either when partially cancelled436

by other poorly geometrically correlated columns (as in Figure 14 (Right)) or as corrections to better geo-437

metrically correlated columns (as in Figure 15b). However, this so-called progress, while valid for the linear438

subproblem, may pollute the sparsity and semantics of the solution to the original nonlinear problem. See439

Figure 16. Thus, we prune poorly geometrically correlated columns from Jf̃ (cq) resulting in a lower-rank440

JS . Motivated by the Gauss-Southwell rule, one might instead prune using gain correlation |ji · f̃ (cq) |,441

which considers large residual decreases with smaller variable values; however, we instead prefer removing442

poorly geometrically correlated columns even when they may have large gains as it seems to lead to better443

semantic interpretation. Additionally, one could drop the absolute value and consider ĵi · f̃ (cq) in order to444

prune columns that are only semantically sensible in one direction.445

Pruning columns of Jf̃ (cq) to get a reduced JS has the additional benefit of potentially eliminating446

portions of the null space of Jf̃ (cq), as the pruned out columns or a combination of them with the non-447

pruned columns may have linear dependencies; this pruning may also improve the condition number. This448

is especially prudent when working with a large number of dimensions, in which case the dimension of the449

19

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b

a1

a2

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b

a1/2

a2

a3

Figure 16: (Left) Here, b = a1 + a2, but a2 is only valid for making progress towards b in conjunction with a1 (and is otherwise
orthogonal). While using a2 may be desirable when trying to solve a truly linear system of equations, it makes less sense when
solving a linearization of a high-dimensional nonlinear problem. (Right) It may be desirable to only progress in the direction of
a1 until other directions become better correlated. At that point, it would be better to find a new direction (in this case, a3)
that leads back towards b.

null space of Jf̃ (cq) and the condition number of Jf̃ (cq) may be quite large. Moreover, these difficulties are450

exacerbated when regularization is not used.451

5.2. Solving the Pruned System452

We avoid regularization entirely in order to avoid changing the solution to the problem; thus, we pursue453

a coordinate descent strategy to solve JS∆cqS = −f̃ (cq) where ∆cqS is a subset of ∆cq. At each iteration, a454

single column ji of JS is used to make progress towards −f̃ (cq). We generally only execute a few iterations455

to mimic the regularization effects of early stopping [53] and truncated-Newton methods [101], as it helps456

to prevent overfitting to the linearized subproblem or reaching the undesirable least squares solution as in457

LARS [38]. Furthermore, we also terminate early if the decrease in L2 error is low.458

Choosing the most geometrically correlated column ji (as in MBI [28]) allows one to best minimize the459

remaining residual; however, small-magnitude columns may require large, undesirable step sizes α(ji) to make460

progress. Instead, motivated by the Gauss-Southwell rule [108], we choose the column ji that maximizes a461

discretized ratio of residual reduction to step size, i.e.462

∆(rT r)

∆α
=
||r(∆cqS)||22 − ||r(∆cqS)− α(ji)ji||22

|α(ji)|
, (20)

where r(∆cqS) is the current residual as a function of the current estimate for ∆cqS . In addition, α(ji) is the
step size obtained when choosing column ji. Flipping all ji so that r(∆cqS)T ji > 0 leads to α(ji) > 0, which
allows one to equivalently maximize

M =
r(∆cqS)T r(∆cqS)−

(
r(∆cqS)T r(∆cqS)− 2α(ji)r(∆c

q
S)T ji + (α(ji))

2
jTi ji

)
α(ji)

(21a)

= 2r(∆cqS)T ji − α(ji)||ji||22 (21b)

= r(∆cqS)T ji + (r(∆cqS)− α(ji)ji)
T
ji. (21c)

The greedy choice of α(ji) removes as much of the residual as possible, setting α(ji)ji = (r (∆cqS) · ĵi)ĵi or463

α(ji) = (r (∆cqS) · ji) /||ji||22, (22)

which zeros out the second term in Equation 21c leaving only r(∆cqS)T ji, i.e. gain correlation.464

There are two subtleties to consider regarding Equations 20–22. First, we do not necessarily use columns465

with the largest gains because, as discussed in Section 5.1, we prune away poorly geometrically correlated466

columns before considering Equations 20–22. Second, one typically limits the size of α(ji) when training467

neural networks and/or solving optimization/control problems, see e.g. trust region methods [124, 45, 107],468

adaptive step sizes for temporal numerical integration [43, 47], and adaptive learning rate techniques such469

as Adam [72], ADADELTA [139], etc. Thus, shorter ji will not necessarily yield the greedy α(ji) shown in470

Equation 22, leaving the second term in the last line of Equation 21c non-zero. See Figure 17.471

20

{θ

r

Figure 17: For longer ji, the α(ji) required to take the greedy step (Equation 22) will be small enough such that it is not
clamped via various safe set or trust region considerations, resulting in the second term in Equation 21c being identically zero.
However, for shorter ji, α(ji) may be clamped, resulting in an r

(
∆cqS

)
− α(ji)ji which is not perpendicular to ji (shown in

green in the figure). In this case, the second term in Equation 21c is non-zero, and the gain correlation of the remaining residual
r
(
∆cqS

)
− α(ji)ji with the search direction ji penalizes search directions that become poorly gain correlated after using them.

With regard to Figure 16, this prefers a scenario using a1/2 and a3 as in Figure 16 (Right) as opposed to using a1 and a2 in
Figure 16 (Left).

Consider bounding the step size α(ji) from above with some αmax. One can choose a reference frame472

such that r (∆cqS) is a unit vector along the y-axis and ji is in the first quadrant of the xy-plane, as shown473

in Figure 18. Referring to the greedy α(ji) in Equation 22, we plot curves representing vectors ji where the474

greedy α(ji) is equal to 1/1.5, 1, and 1/.75 in the figure. When bounding α(ji) from above by some αmax,475

the αG = αmax curve represents the boundary between the tips of longer vectors that can use the greedy476

α(ji) and the tips of shorter vectors where α(ji) would be clamped. In particular, for the αmax = 1 case, the477

yellow region in the figure represents the tips of longer vectors and the green region represents the tips of478

shorter vectors. In the green region, the second term in Equation 21c is added to the usual r (∆cqS)
T
ji gain479

correlation, increasing preference for search directions that remain well-correlated after using them. Figure480

18 (Right) shows the magnitude of the second term in Equation 21c. Additionally, one could multiply the481

second term in Equation 21c by an arbitrary scaling constant and increase its influence.482

We also consider the case of clamping based on total progress. Figure 19 uses the same reference frame483

as Figure 18 but draws the boundary where ||ji||2 = ||r (∆cqS) ||2/2. Figure 19 (Left) draws three search484

directions taking the greedy step. Regardless of the length of ji, the greedy α(ji) rescales such that α(ji)ji485

ends at the boundary between the green and yellow regions where r (∆cqS) − α(ji)ji is orthogonal to ji.486

Figure 19 (Right) shows how clamping the progress limits the ability of a search direction to take the greedy487

step, resulting in the second term in Equation 21c being non-zero. Another way of choosing α(ji) is based488

on the observation that r (∆cqS)−α(ji)ji is always less geometrically correlated with ji than r (∆cqS) is, since489

it points to the left instead of upwards. Hence, one could choose α in order to bound how much worse the490

gain/geometric correlation of r (∆cqS) − α(ji)ji is allowed to have compared to that of r (∆cqS). In general,491

there are many potential strategies, but in all such cases, our methodology is to first prune so that large gain492

correlation does not introduce poorly geometrically correlated vectors, and then to consider correlation of493

the new residual r (∆cqS)−α(ji)ji in addition to correlation of the current residual in order to favor scenarios494

like Figure 16 (Right) over Figure 16 (Left).495

5.3. Examples496

We consider the problem of determining parameters w that best match a three-dimensional synthetic497

face model to a real image, as discussed in Section 2. Although we used CSS to generate Figure 4 and for498

related efforts, here we consider a slightly modified situation in order to better isolate and demonstrate the499

behavior of CSS. Let w represent the controls for the face blendshapes, jaw angles, and jaw translation, and500

x(w) represent the synthetic three-dimensional face surface obtained from w. We replace the inference-based501

neural network keypoint detector with a more deterministic artist-drawn rotoscoping of curves for the eyes502

and mouth, as shown in Figure 20 (Left). In order to generate comparable keypoints on the synthetic face503

21

Figure 18: We choose a reference frame where r
(
∆cqS

)
is a unit vector along the y-axis and ji is in the first quadrant of

the xy-plane. (Left) Poorly geometrically correlated vectors (those with tips in the red region) are pruned as in Section 5.1.
Referring to the greedy α(ji) in Equation 22, we plot curves representing the tips of vectors ji where the greedy α(ji) is equal
to 1/1.5, 1, and 1/.75. When bounding α(ji) from above by αmax, the αG = αmax curve represents the boundary between the
tips of longer vectors that can use the greedy α(ji) and the tips of shorter vectors where α(ji) would be clamped. In particular,
for the αmax = 1 case, the yellow region represents the tips of longer vectors and the green region represents the tips of shorter
vectors. (Right) The magnitude of the second term in Equation 21c for the αmax = 1 case. Note that it is non-zero only for
shorter vectors with tips inside the αG = 1 curve.

model, we draw corresponding curves barycentrically embedded on the three-dimensional face geometry.504

Then, x(w) determines the three-dimensional location of these barycentrically embedded curves, which505

subsequently are projected into the image plane using calibrated camera intrinsic and extrinsic parameters506

[62]; this simple projection replaces the differentiable renderer. See Figure 20 (Right). In order to obtain507

comparable keypoints, we label easily-identifiable locations on both sets of curves (i.e. those drawn on the508

synthetic model and those drawn on the image), e.g. corners of the mouth and eyes, middles of the lips,509

etc. To increase the number of comparable keypoints, we uniformly sample between the projected (into the510

image plane) locations of the easily-identifiable keypoints. Letting C∗ be the two-dimensional keypoints on511

the real image and C(x(w)) be the corresponding projected keypoints determined by the parameters w of512

the synthetic model, we then solve513

minw‖C∗ − C(x(w))‖22 (23)

in order to recover the parameters w that best match the two sets of keypoints together.514

For comparison against CSS, we consider solving Equation 23 using Dogleg [112, 94] with no prior, Dogleg515

with a prior weight of λ = 3600, and BFGS [107] with a soft-L1 prior with a weight of 3600 (i.e. with an516

extra term 3600
∑
i 2(
√

1 + w2
i − 1) [27]). When solving with CSS, we first prune all columns whose angle517

to the residual has an absolute cosine less than 0.3. Then, α(ji) is set to a fixed size of 0.01 and coordinate518

descent is run until the linear L2 error no longer sufficiently decreases or when over 10 coordinates are519

used. We limit all four methods to at most 10 Gauss-Newton linearization iterations. Figure 21 shows the520

results. CSS and methods using regularization give the most reasonable geometric results. A major benefit521

of CSS is the resulting sparsity of the weights: while Dogleg with and without regularization sets nearly all522

the parameters to a non-zero value, CSS generally uses only a small number of non-zero weights. The soft523

L1 regularized solution is sparser than the L2 regularized solution; however, due to approximations in the524

chosen optimization approach (BFGS, Soft L1), it produces many small (i.e. < 1× 10−3) weights instead of525

identically zero values. While one could clamp small values to zero, care must be taken to not accidentally526

clamp weights that contribute significantly to the overall solution.527

To further elucidate the performance of these approaches, we construct a known exact solution and528

subsequently add an increasing amount of noise. First, an exact set of keypoints is determined by subsampling529

the contours on the three-dimensional face geometry. Then, a smile expression is created by setting two530

specific components of w to 1 while the other components remain set to zero. This known w∗ determines531

22

Figure 19: We use the same reference frame as in Figure 18 but draw the boundary where ||ji||2 = ||r
(
∆cqS

)
||2/2. The yellow

and green regions are shaded as in the αmax = 1 case from Figure 18. (Left) Three search directions are drawn taking the
greedy step. Regardless of the length of ji, the greedy α(ji) rescales such that α(ji)ji ends at the boundary between the green
and yellow regions where r

(
∆cqS

)
−α(ji)ji is orthogonal to ji. (Right) Clamping progress limits the ability of a search direction

to take the greedy step, resulting in the second term in Equation 21c being non-zero.

Figure 20: (Left) Hand-drawn rotoscope curves on a real image. (Right) Barycentrically embedded curves on the three-
dimensional geometric facial model are projected into the image plane (red) and compared to curves drawn/rotoscoped on the
real image (blue). The inset shows the facial parameters w for this pose.

face geometry x(w∗) along with barycentrically embedded keypoints that can be projected into the image532

plane to determine C∗. The results obtained are shown in Figures 22a and 22d and are similar to those533

obtained using the real image data in Figure 21. Next, we add an increasing amount of uniformly distributed534

noise to C∗ in the image plane. As expected, Dogleg with no regularization produces reasonable results when535

the noise is low but begins to overfit to the erroneous data as the amount of noise increases, see Figure 22536

(first row). Both of the regularized approaches as well as CSS are able to target the noisy curves without537

overfitting, producing more reasonable geometry. The right half of Figure 22 shows that CSS yields sparser,538

more semantic solutions even with the added noise. Tables 1 and 2 demonstrate quantitative results for these539

examples. As seen in Table 1, CSS performs the best in all cases as measured by various metrics. Table 2540

uses two sparsity measures: the l0 metric counts how many facial parameters are strictly 0, and the Gini541

metric is 1 − 2
∑ŵi/||ŵ||1
i=1 (N−i+0.5

N), where ŵ are the sorted parameters with ŵi the ith largest [66]. Note542

how regularization improves the Gini metric, but does not necessarily improve the l0 metric.543

5.4. Parameter Study544

Column Choice. Returning to the solution of Equation 23 for the real image data, we compare our approach545

for choosing the next coordinate descent column (Section 5.2) to using Gauss-Southwell and MBI. For each546

approach, we linearize and solve with no thresholding for the relative decrease in L2 error, an upper limit547

of 10 unique coordinates used, and a fixed step size of 0.01; in these examples, we remove the eye rotoscope548

23

Table 1: Comparing the accuracy of estimating the facial parameters in the synthetic tests under various metrics. CSS produces
the best results regardless of noise and metric.

L2 Error L1 Error EMD [116] Error

Method No Noise 0.005 0.01 No Noise 0.005 0.01 No Noise 0.005 0.01

Dogleg 2.578 8.815 20.325 19.227 70.852 157.22 0.128 0.485 1.07
Dogleg+L2 0.972 0.952 1.209 4.954 5.324 5.704 0.034 0.036 0.039
BFGS+Soft L1 0.923 0.91 1.023 3.139 3.057 3.359 0.0215 0.021 0.023
CSS 0.741 0.392 0.509 2.208 0.99 1.08 0.015 0.007 0.007

Table 2: The sparsity of the results of the synthetic tests using common sparsity metrics (a larger number is better).

l0 Metric Gini Metric

Method No Noise 0.005 0.01 No Noise 0.005 0.01

Dogleg 21 21 21 0.628 0.580 0.607
Dogleg+L2 21 21 21 0.807 0.745 0.739
BFGS+Soft L1 21 21 21 0.913 0.905 0.916
CSS 128 137 140 0.949 0.974 0.978

curves from the energy function and only consider curves drawn around the mouths on the image and model.549

Results are shown in Figure 23. MBI overfits and overuses mouth blendshapes, e.g. the two most heavily550

weighted shapes have magnitudes of 85.78 and 63.12. On the other hand, Gauss-Southwell and CSS keep551

the parameters within a reasonable range while maintaining the sparsity of the solution. We note that with552

coordinate descent it is generally a matter of when, not if, the algorithm chooses a coordinate that will be553

overused/overweighted; our examples demonstrate that MBI chooses those coordinates more quickly than554

Gauss-Southwell and CSS.555

Step Size & Convergence. Since the problem has been normalized so that the α(ji) generally make most556

sense between 0 and 1, here we compare fixed step sizes of α(ji) = 0.01, 0.02, 0.1, 0.5 and 1.0 to the full,557

greedy step in Equation 22. Without pruning, we run 10 Gauss-Newton iterations with no thresholding for558

the relative decrease in L2 error and an upper limit of 10 unique coordinates used. We find that smaller step559

sizes achieve better overall facial shapes and less overused parameters (see Figure 24). In particular, the560

greedy step sets 7 parameters to be greater than 1 while step sizes of 0.02 and 0.01 only set 4. Removing the561

eye rotoscope curves causes the overused parameters to disappear; however, as seen in Figure 25, the greedy562

step causes the mouth to move unnaturally. This would seem to indicate that always taking the greedy step563

will result in some overfitting.564

We also compare the effect of using fixed step sizes in Equation 20 versus the full, greedy step size565

equivalent to Gauss-Southwell without pruning. To isolate this variable, we run 10 Gauss-Newton iterations566

with no thresholding for the relative decrease in L2 error and an upper limit of 10 unique coordinates used.567

We vary α(ji) in Equation 20 but set the actual step size taken to be fixed at 0.01. As shown in Figure 26,568

while the resulting geometry and weights are all similar, our approach of allowing the step size to influence569

the chosen coordinate allows the optimization to more quickly reduce the error in earlier Gauss-Newton570

iterations than when using Gauss-Southwell (see Figure 27). Therefore, it may be beneficial to use CSS with571

a fixed size step when only a few Gauss-Newton iterations are desired.572

Pruning. We rescale r to r̂ = r/||r|| and then compare different threshold values for pruning: 0.0 (no573

pruning), 0.2, 0.3, and 0.5. We run 10 Gauss-Newton iterations with a step size of 0.01 with no thresholding574

for the relative decrease in L2 error. To emphasize the effect of pruning, we allow up to 50 unique coordinates575

per linearization, and focus only on the rotoscope curves around the mouth. With little to no pruning the576

model overfits and the geometry around the mouth deforms unreasonably. As the pruning threshold increases,577

24

the geometry becomes more regularized and the facial parameters are sparser, as the optimization is forced578

to use only the most correlated directions. See Figure 28. However, we caution that too much pruning causes579

MBI style column choices.580

6. Conclusions581

In difficult nonlinear problems such as the one described in Section 2, one often solves linear subproblems582

to make progress. Although PCA is quite popular for solving such problems, especially when there are issues583

with null spaces and the right-hand side not being in the range of the linearized system, we showed that our584

iLM method not only efficiently monotonically converges to the exact solution of the linearized subproblem,585

but does so more smoothly. We subsequently pointed out that the larger singular values of the coefficient586

matrix can be less important than considering which controls are optimal for obtaining the right-hand side.587

These considerations motivated our column space search (CSS) approach. We chose a complex real-world588

problem, estimating three-dimensional facial expressions from a mere eight contours drawn on a single two-589

dimensional RGB image, that allows even non-experts to simply glance at an image and comprehend the590

effects of noise, overfitting, and regularization. We were able to robustly estimate clean sparse parameter591

values with good semantic meaning in a highly underconstrained situation where one would typically need592

significant regularization. In fact, the standard approach without regularization was wildly inaccurate, and593

although regularization helped to moderate the overall face shape, it excited almost every parameter in the594

model, clouding semantic interpretation.595

Acknowledgements596

Research supported in part by ONR N00014-13-1-0346, ONR N00014-17-1-2174, ARL AHPCRC W911NF-597

07-002, and generous gifts from Amazon and Toyota. In addition, we would like to thank both Reza and598

Behzad at ONR for supporting our efforts into computer vision and machine learning, as well as Cary Phillips599

and Industrial Light & Magic for supporting our efforts into facial performance capture. M.B. was supported600

in part by The VMWare Fellowship in Honor of Ole Agesen. We would also like to thank Paul Huston for601

his acting.602

25

11
2
4

1
14

2
11

51
11

6
7

11
75

(a) Dogleg (b) Dogleg+L2 (c) BFGS+Soft L1 (d) CSS (e) Target

Figure 21: Dogleg without regularization clearly overfits to the curves, producing highly unrealistic face shapes. Dogleg with
regularization performs better but sometimes overfits as well. This could be tuned by increasing the regularization weight at the
cost of potentially damping out the performance. Our approach produces facial expressions that are reasonably representative of
the captured image. The inset bar plots demonstrate the sparsity of the weights for each of the methods. Our method generally
produces the sparsest set of weights; e.g. in frame 1142, our method has 12 non-zero parameter values while L2 regularization
produces fully dense results and soft L1 regularization has 49 significant parameter values (i.e. > 1× 10−3).

26

D
o
g
le
g

D
o
g
le
g
+

L
2

B
F
G
S
+

S
o
ft

L
1

C
S
S

(a) No Noise (b) (0.005) (c) (0.01) (d) No Noise (e) Noise (0.005) (f) Noise (0.01)

Figure 22: A synthetic test where a known w∗ is used to create blue target curves. (Left) As we increase the amount of noise
added to the points on the blue target curve, the Dogleg method without regularization overfits causing the mesh to “explode”
in spite of having the smallest error as measured by Equation 23 (typical of overfitting). On the other hand, both standard
regularization and our approach prevent the model from overfitting to the noisy curves. (Right) The corresponding facial
parameters. The target solution was generated by setting the two orange columns to one and the blue columns to zero. The
figure heights are clipped at 1.0 and many parameter values exceed that. Though the regularized solves have smaller, spurious
weights than the non-regularized version (second and third row vs. first row), our approach (last row) produces a much sparser
solution with more semantic meaning even in the presence of noise.

27

F
ir

st
F

u
ll

(a) MBI (b) GS (c) CSS

Figure 23: A comparison of the coordinates chosen by the MBI rule, the Gauss-Southwell (GS) rule, and CSS when solving
without the eye rotoscope curves. The top row are the results after a single Gauss-Newton iteration, and the bottom row are
the results after 10 Gauss-Newton iterations.

(a) Greedy (b) 0.01 (c) 0.02 (d) 0.1 (e) 0.5 (f) 1.0

Figure 24: We compare the behavior of the geometry and the facial parameters when using different step sizes.

(a) Greedy (b) 0.01 (c) 0.02 (d) 0.1 (e) 0.5 (f) 1.0

Figure 25: A comparison of the behavior of the geometry and the facial parameters when using different step sizes without the
eye rotoscope curves.

28

G
re

ed
y

0.
0
1

0.
02

with eye rotoscope no eye rotoscope

0
.1

0.
5

1.
0

with eye rotoscope no eye rotoscope

Figure 26: A comparison of the geometry and parameter results from varying the step size used for choosing the next coordinate
in CSS.

29

(a) with eye rotoscope (b) no eye rotoscope

Figure 27: A comparison of the average L2 errors plotted before every Gauss-Newton iteration when varying the step size used
to choose the next coordinate direction in CSS. The brown lines plot the average L2 errors when using the Gauss-Southwell
approach; notice how CSS allows for a faster reduction in error.

(a) No Pruning (b) 0.2 (c) 0.3 (d) 0.5

Figure 28: As we increase the threshold for pruning, the resulting solution becomes sparser and more regularized.

30

References603

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.604

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,605

Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh606

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,607

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay608

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan609

Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.610

Software available from tensorflow.org.611

[2] Frédéric Abergel and Roger Temam. On some control problems in fluid mechanics. Theoretical and612

Computational Fluid Dynamics, 1:303–325, 1990.613

[3] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision:614

A survey. IEEE Access, 6:14410–14430, 2018.615

[4] Jose M. Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In D. D.616

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information617

Processing Systems 29, pages 2270–2278. Curran Associates, Inc., 2016.618

[5] James Baglama and Lothar Reichel. Augmented implicitly restarted Lanczos bidiagonalization meth-619

ods. SIAM J. Sci. Comput., 27(1):19–42, July 2005.620

[6] Michael Bao, Jane Wu, Xinwei Yao, and Ronald Fedkiw. Deep energies for estimating three-dimensional621

facial pose and expression, 2018, 1812.02899.622

[7] Michael H. Bao, Matthew D. Cong, Stéphane Grabli, and Ronald Fedkiw. High-quality face capture us-623

ing anatomical muscles. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition624

(CVPR), pages 10794–10803, 2019.625

[8] Michael H. Bao, David Hyde, Xinru Hua, and Ronald Fedkiw. Improved search strategies with appli-626

cation to estimating facial blendshape parameters, 2020, 1812.02897.627

[9] Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus Gross. High-quality single-shot628

capture of facial geometry. ACM Trans. Graph., 29(4), July 2010.629

[10] Thabo Beeler, Fabian Hahn, Derek Bradley, Bernd Bickel, Paul Beardsley, Craig Gotsman, Robert W.630

Sumner, and Markus Gross. High-quality passive facial performance capture using anchor frames.631

ACM Trans. Graph., 30(4), July 2011.632

[11] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic lan-633

guage model. Journal of Machine Learning Research, 3:1137–1155, 2003.634

[12] Mario Bertero and Patrizia Boccacci. Introduction to inverse problems in imaging. CRC press, 1998.635

[13] Kiran S. Bhat, Rony Goldenthal, Yuting Ye, Ronald Mallet, and Michael Koperwas. High fidelity636

facial animation capture and retargeting with contours. In Proceedings of the 12th ACM SIG-637

GRAPH/Eurographics Symposium on Computer Animation, pages 7–14. ACM, 2013.638

[14] Åke Björck. Numerical methods for least squares problems. SIAM, 1996.639

[15] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D faces. In Proceedings640

of the 26th annual conference on computer graphics and interactive techniques, pages 187–194. ACM641

Press/Addison-Wesley Publishing Co., 1999.642

[16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon643

Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and644

Karol Zieba. End to end learning for self-driving cars, 2016, 1604.07316.645

31

[17] Léon Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg, Berlin,646

Heidelberg, 2012.647

[18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine648

learning, 2016, 1606.04838.649

[19] Léon Bottou, Jonas Peters, Joaquin Quiñonero Candela, Denis X. Charles, D. Max Chickering, Elon650

Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning651

systems: The example of computational advertising. J. Mach. Learn. Res., 14(1):3207–3260, January652

2013.653

[20] Sofien Bouaziz, Yangang Wang, and Mark Pauly. Online modeling for realtime facial animation. ACM654

Transactions on Graphics (TOG), 32(4):40, 2013.655

[21] Charles G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of656

computation, 19(92):577–593, 1965.657

[22] Charles G. Broyden. Quasi-Newton methods and their application to function minimisation. Mathe-658

matics of Computation, 21(99):368–381, 1967.659

[23] Charles G. Broyden. A new double-rank minimisation algorithm. preliminary report. In Notices of660

the American Mathematical Society, volume 16, page 670. Amer. Mathematical Soc., 201 Charles St.,661

Providence, RI 02940-2213, 1969.662

[24] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2D 3D face alignment663

problem? (and a dataset of 230,000 3D facial landmarks). In 2017 IEEE International Conference on664

Computer Vision (ICCV), pages 1021–1030, 2017.665

[25] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. Facewarehouse: A 3D facial ex-666

pression database for visual computing. IEEE Transactions on Visualization and Computer Graphics,667

20(3):413–425, 2014.668

[26] Tony F. Chan and Xue-Cheng Tai. Level set and total variation regularization for elliptic inverse669

problems with discontinuous coefficients. Journal of Computational Physics, 193(1):40–66, 2004.670

[27] Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud. Deterministic edge-671

preserving regularization in computed imaging. IEEE Transactions on image processing, 6(2):298–311,672

1997.673

[28] Bilian Chen, Simai He, Zhening Li, and Shuzhong Zhang. Maximum block improvement and polynomial674

optimization. SIAM Journal on Optimization, 22(1):87–107, 2012.675

[29] Matthew Cong, Michael Bao, Jane L. E, Kiran S. Bhat, and Ronald Fedkiw. Fully automatic generation676

of anatomical face simulation models. In Proceedings of the 14th ACM SIGGRAPH / Eurographics677

Symposium on Computer Animation, SCA ’15, page 175–183, New York, NY, USA, 2015. Association678

for Computing Machinery.679

[30] Matthew Cong, Lana Lan, and Ronald Fedkiw. Muscle simulation for facial animation in Kong: Skull680

Island. In ACM SIGGRAPH 2017 Talks, SIGGRAPH ’17, New York, NY, USA, 2017. Association for681

Computing Machinery.682

[31] Matthew D. Cong, Kiran S. Bhat, and Ronald Fedkiw. Art-directed muscle simulation for high-end683

facial animation. In Proceedings of the 15th ACM SIGGRAPH / Eurographics Symposium on Computer684

Animation (SCA’16), pages 119–127, 2016.685

[32] Matthew D. Cong, Lana Lan, and Ronald Fedkiw. Local geometric indexing of high resolution data686

for facial reconstruction from sparse markers. arXiv preprint arXiv:1903.00119, 2019.687

[33] William C Davidon. Variable metric method for minimization. Technical Report ANL-5990, Argonne688

National Laboratory, 5 1959.689

32

[34] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ran-690

zato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. In Advances691

in neural information processing systems, pages 1223–1231, 2012.692

[35] Shelley Derksen and Harvey J. Keselman. Backward, forward and stepwise automated subset selection693

algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and694

Statistical Psychology, 45(2):265–282, 1992.695

[36] Fernando Diaz, Donald Metzler, and Sihem Amer-Yahia. Relevance and ranking in online dating696

systems. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Develop-697

ment in Information Retrieval, SIGIR ’10, page 66–73, New York, NY, USA, 2010. Association for698

Computing Machinery.699

[37] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and700

stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.701

[38] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The702

Annals of statistics, 32(2):407–499, 2004.703

[39] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems, volume704

375. Springer Science & Business Media, 1996.705

[40] Jinyan Fan. The modified Levenberg-Marquardt method for nonlinear equations with cubic conver-706

gence. Mathematics of Computation, 81(277):447–466, 2012.707

[41] Ronald Fedkiw, Yilin Zhu, Winnie Lin, and Jane Wu. Continuous mathematical methods, emphasizing708

machine learning, 2020. Stanford CS205L Winter 2020 Lecture Slides.709

[42] Ronald P. Fedkiw, Guillermo Sapiro, and Chi-Wang Shu. Shock capturing, level sets, and PDE based710

methods in computer vision and image processing: a review of Osher’s contributions. Journal of711

Computational Physics, 185(2):309 – 341, 2003.712

[43] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their application713

to some heat transfer problems. Technical Report Technical Report 315, NASA, 1969.714

[44] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):317–322,715

1970.716

[45] Roger Fletcher. Practical Methods Of Optimization. John Wiley & Sons, 1980.717

[46] Roger Fletcher and Michael J. D. Powell. A rapidly convergent descent method for minimization. The718

computer journal, 6(2):163–168, 1963.719

[47] Jessica G. Gaines and Terry J. Lyons. Variable step size control in the numerical solution of stochastic720

differential equations. SIAM Journal on Applied Mathematics, 57(5):1455–1484, 1997.721

[48] Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of PDE systems with physics-722

constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.723

[49] Zhenglin Geng, Daniel Johnson, and Ronald Fedkiw. Coercing machine learning to output physically724

accurate results. Journal of Computational Physics, 406:109099, 2020.725

[50] Abhijeet Ghosh, Graham Fyffe, Borom Tunwattanapong, Jay Busch, Xueming Yu, and Paul Debevec.726

Multiview face capture using polarized spherical gradient illumination. In Proceedings of the 2011 SIG-727

GRAPH Asia Conference, SA ’11, New York, NY, USA, 2011. Association for Computing Machinery.728

[51] Frederic Gibou, David Hyde, and Ron Fedkiw. Sharp interface approaches and deep learning techniques729

for multiphase flows. Journal of Computational Physics, 380:442–463, 2019.730

[52] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of731

computation, 24(109):23–26, 1970.732

33

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.733

[54] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-734

phNet: Fast simple resource-constrained structure learning of deep networks. In 2018 IEEE/CVF735

Conference on Computer Vision and Pattern Recognition, pages 1586–1595, 2018.736

[55] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich. Web-scale Bayesian737

click-through rate prediction for sponsored search advertising in Microsoft’s Bing search engine. In738

Proceedings of the 27th International Conference on International Conference on Machine Learning,739

ICML’10, page 13–20, Madison, WI, USA, 2010. Omnipress.740

[56] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances741

in neural information processing systems (NIPS), 2016.742

[57] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks743

with pruning, trained quantization and Huffman coding, 2015, 1510.00149.744

[58] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for745

efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,746

editors, Advances in Neural Information Processing Systems 28, pages 1135–1143. Curran Associates,747

Inc., 2015.748

[59] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning. Springer749

series in statistics New York, NY, USA:, 2001.750

[60] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.751

In Proceedings of the IEEE International Conference on Computer Vision, pages 1389–1397, 2017.752

[61] Michael T. Heath. Scientific computing: an introductory survey. SIAM, 2002.753

[62] Janne Heikkila and Olli Silven. A four-step camera calibration procedure with implicit image correction.754

In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,755

pages 1106–1112. IEEE, 1997.756

[63] Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li. Unconstrained realtime facial performance757

capture. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages758

1675–1683, 2015.759

[64] Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. Leveraging motion capture and 3D760

scanning for high-fidelity facial performance acquisition. In ACM Transactions on Graphics (TOG),761

volume 30, page 74. ACM, 2011.762

[65] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks763

on neural network policies, 2017, 1702.02284.764

[66] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on Information765

Theory, 55(10):4723–4741, 2009.766

[67] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo767

Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, Fernando Mujica, Adam Coates,768

and Andrew Y. Ng. An empirical evaluation of deep learning on highway driving, 2015, 1504.01716.769

[68] Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. Dynamic 3d avatar creation from hand-held770

video input. ACM Transactions on Graphics (ToG), 34(4):45, 2015.771

[69] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions ac-772

celerate convergence in deep and physics-informed neural networks. Journal of Computational Physics,773

404:109136, 2020.774

34

[70] Antony Jameson, Luigi Martinelli, and Niles A. Pierce. Optimum aerodynamic design using the775

Navier-Stokes equations. Theoretical and Computational Fluid Dynamics, 10:213–237, 1998.776

[71] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio777

Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In778

Proceedings of the 22nd ACM International Conference on Multimedia, MM ’14, pages 675–678, New779

York, NY, USA, 2014. Association for Computing Machinery.780

[72] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014, 1412.6980.781

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-782

lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,783

Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,784

2012.785

[74] Igor’ Anatol’yevich Krylov and Feliks Leonidovich Chernous’ko. Solution of problems of optimal control786

by the method of local variations. USSR Computational Mathematics and Mathematical Physics,787

6(2):12–31, 1966.788

[75] Lana Lan, Matthew Cong, and Ronald Fedkiw. Lessons from the evolution of an anatomical facial789

muscle model. In Proceedings of the ACM SIGGRAPH Digital Production Symposium, DigiPro ’17,790

New York, NY, USA, 2017. Association for Computing Machinery.791

[76] Jeff Lander. Skin them bones: Game programming for the web generation. Game Developer Magazine,792

5(1):10–18, 1998.793

[77] Rasmus Larsen. Lanczos bidiagonalization with partial reorthogonalization. DAIMI Report Series,794

27(537), Dec. 1998.795

[78] Quoc V. Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and Andrew Y Ng. On796

optimization methods for deep learning. 2011.797

[79] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E.798

Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a back-propagation network.799

In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 396–404.800

Morgan-Kaufmann, 1990.801

[80] Yann LeCun, Léon Bottou, and Yoshua Bengio. Reading checks with multilayer graph transformer net-802

works. In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 1,803

pages 151–154 vol.1, 1997.804

[81] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to805

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.806

[82] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with807

invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society Conference on808

Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages II–104 Vol.2, 2004.809

[83] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly810

of applied mathematics, 2(2):164–168, 1944.811

[84] John P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng. Prac-812

tice and Theory of Blendshape Facial Models. In Sylvain Lefebvre and Michela Spagnuolo, editors,813

Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014.814

[85] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient815

convnets, 2016, 1608.08710.816

[86] Hao Li, Thibaut Weise, and Mark Pauly. Example-based facial rigging. ACM Transactions on Graphics817

(TOG), 29(4):32, 2010.818

35

[87] Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. Realtime facial animation with on-the-fly correctives.819

ACM Trans. Graph., 32(4):42–1, 2013.820

[88] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte carlo ray tracing821

through edge sampling. ACM Trans. Graph., 37(6), December 2018.822

[89] Julia Ling, Reese Jones, and Jeremy Templeton. Machine learning strategies for systems with invariance823

properties. Journal of Computational Physics, 318:22 – 35, 2016.824

[90] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning825

efficient convolutional networks through network slimming. In 2017 IEEE International Conference826

on Computer Vision (ICCV), pages 2755–2763, 2017.827

[91] Matthew M. Loper and Michael J. Black. Opendr: An approximate differentiable renderer. In European828

Conference on Computer Vision, pages 154–169. Springer, 2014.829

[92] Yifei Lou, Xiaoqun Zhang, Stanley Osher, and Andrea Bertozzi. Image recovery via nonlocal operators.830

Journal of Scientific Computing, 42:185–197, 2010.831

[93] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In I. Guyon,832

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances833

in Neural Information Processing Systems 30, pages 3288–3298. Curran Associates, Inc., 2017.834

[94] Manolis I. A. Lourakis and Antonis A. Argyros. Is Levenberg-Marquardt the most efficient optimization835

algorithm for implementing bundle adjustment? In Tenth IEEE International Conference on Computer836

Vision (ICCV’05), volume 2, pages 1526–1531. IEEE, 2005.837

[95] Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng Zhang. Transformed `1 regularization for learning838

sparse deep neural networks. Neural Networks, 119:286 – 298, 2019.839

[96] Nadia Magnenat-Thalmann, Richard Laperrière, and Daniel Thalmann. Joint-dependent local defor-840

mations for hand animation and object grasping. In Proceedings on Graphics Interface ’88, pages841

26–33, CAN, 1989. Canadian Information Processing Society.842

[97] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of843

the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.844

[98] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.845

The bulletin of mathematical biophysics, 5:115–133, 1943.846

[99] Brian McFee and Gert Lanckriet. Metric learning to rank. In Proceedings of the 27th International847

Conference on International Conference on Machine Learning, ICML’10, page 775–782, Madison, WI,848

USA, 2010. Omnipress.849

[100] Abdel-Rahman Mohamed, George E. Dahl, and Geoffrey Hinton. Acoustic modeling using deep belief850

networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1):14–22, 2012.851

[101] Stephen G. Nash. A survey of truncated-Newton methods. Journal of computational and applied852

mathematics, 124(1-2):45–59, 2000.853

[102] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured Bayesian854

pruning via log-normal multiplicative noise. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,855

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing856

Systems 30, pages 6775–6784. Curran Associates, Inc., 2017.857

[103] Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).858

Soviet Mathematics Doklady, 27:372–376, 1983.859

[104] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM860

Journal on Optimization, 22(2):341–362, 2012.861

36

[105] Thomas Neumann, Kiran Varanasi, Stephan Wenger, Markus Wacker, Marcus Magnor, and Chris-862

tian Theobalt. Sparse localized deformation components. ACM Transactions on Graphics (TOG),863

32(6):179, 2013.864

[106] Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of computation,865

35(151):773–782, 1980.866

[107] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.867

[108] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate descent868

converges faster with the Gauss-Southwell rule than random selection. In International Conference on869

Machine Learning, pages 1632–1641, 2015.870

[109] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.871

Faster CNNs with direct sparse convolutions and guided pruning, 2016, 1608.01409.872

[110] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor873

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,874

Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,875

Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning876

library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors,877

Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.,878

2019.879

[111] John C. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines.880

Technical Report MSR-TR-98-14, Microsoft Research, April 1998.881

[112] Michael J. D. Powell. A hybrid method for nonlinear equations. In Philip Rabinowitz, editor, Numerical882

Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon and Breach, 1970.883

[113] Yinghe Qi, Jiacai Lu, Ruben Scardovelli, Stéphane Zaleski, and Grétar Tryggvason. Computing curva-884

ture for volume of fluid methods using machine learning. Journal of Computational Physics, 377:155–885

161, 2019.886

[114] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,887

12(1):145–151, 1999.888

[115] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks: A889

deep learning framework for solving forward and inverse problems involving nonlinear partial differen-890

tial equations. Journal of Computational Physics, 378:686 – 707, 2019.891

[116] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions with applications to892

image databases. In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271),893

pages 59–66, 1998.894

[117] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016, 1609.04747.895

[118] Moktar A. Salama, John A. Garba, Laura A. Demsetz, and Firdaus E. Udwadia. Simultaneous opti-896

mization of controlled structures. Computational Mechanics, 3:275–282, 1988.897

[119] David F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathematics of898

computation, 24(111):647–656, 1970.899

[120] Hao-Jun Michael Shi, Shenyinying Tu, Yangyang Xu, and Wotao Yin. A primer on coordinate descent900

algorithms, 2016, 1610.00040.901

[121] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. Automatic determination of facial muscle activa-902

tions from sparse motion capture marker data. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05,903

page 417–425, New York, NY, USA, 2005. Association for Computing Machinery.904

37

[122] Eftychios Sifakis, Andrew Selle, Avram Robinson-Mosher, and Ronald Fedkiw. Simulating speech905

with a physics-based facial muscle model. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics906

Symposium on Computer Animation, SCA ’06, page 261–270, Goslar, DEU, 2006. Eurographics Asso-907

ciation.908

[123] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial909

differential equations. Journal of Computational Physics, 375:1339 – 1364, 2018.910

[124] Danny C. Sorensen. Newton’s method with a model trust region modification. SIAM Journal on911

Numerical Analysis, 19(2):409–426, 1982.912

[125] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural913

networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.914

[126] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization915

and momentum in deep learning. In International conference on machine learning, pages 1139–1147,916

2013.917

[127] Theano Development Team. Theano: A Python framework for fast computation of mathematical918

expressions. arXiv e-prints, abs/1605.02688, May 2016.919

[128] Justus Thies, Michael Zollhofer, Marc Stamminger, Christian Theobalt, and Matthias Nießner.920

Face2Face: Real-time face capture and reenactment of RGB videos. In Proceedings of the IEEE921

Conference on Computer Vision and Pattern Recognition, pages 2387–2395, 2016.922

[129] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5: rmsprop: Divide the gradient by a running average923

of its recent magnitude. Coursera: Neural networks for machine learning, 4(2):26–31, 2012.924

[130] Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.925

Journal of optimization theory and applications, 109(3):475–494, 2001.926

[131] Marko Vauhkonen, Dénes Vadász, Pasi A. Karjalainen, Erkki Somersalo, and Jari P. Kaipio. Tikhonov927

regularization and prior information in electrical impedance tomography. IEEE Transactions on Med-928

ical Imaging, 17(2):285–293, 1998.929

[132] Min Wang, Siu Wun Cheung, Wing Tat Leung, Eric T. Chung, Yalchin Efendiev, and Mary Wheeler.930

Reduced-order deep learning for flow dynamics. the interplay between deep learning and model reduc-931

tion. Journal of Computational Physics, 401:108939, 2020.932

[133] Wei Wen, Yiran Chen, Hai Li, Yuxiong He, Samyam Rajbhandari, Minjia Zhang, Wenhan Wang, Fang933

Liu, and Bin Hu. Learning intrinsic sparse structures within long short-term memory. In ICLR 2018934

Conference, February 2018.935

[134] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in936

deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors,937

Advances in Neural Information Processing Systems 29, pages 2074–2082. Curran Associates, Inc.,938

2016.939

[135] Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.940

[136] Chenglei Wu, Derek Bradley, Markus Gross, and Thabo Beeler. An anatomically-constrained local941

deformation model for monocular face capture. ACM Transactions on Graphics (TOG), 35(4):115,942

2016.943

[137] Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable944

scale-invariant sparsity measures. In International Conference on Learning Representations, 2020.945

38

[138] Jihun Yun, Peng Zheng, Eunho Yang, Aurelie Lozano, and Aleksandr Aravkin. Trimming the `1946

regularizer: Statistical analysis, optimization, and applications to deep learning. In Kamalika Chaud-947

huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine948

Learning, volume 97 of Proceedings of Machine Learning Research, pages 7242–7251, Long Beach,949

California, USA, 09–15 Jun 2019. PMLR.950

[139] Matthew D. Zeiler. ADADELTA: An adaptive learning rate method, 2012, 1212.5701.951

[140] Xiaoqun Zhang, Martin Burger, Xavier Bresson, and Stanley Osher. Bregmanized nonlocal regulariza-952

tion for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3(3):253–276,953

2010.954

[141] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element method, volume 1: the basis,955

volume 1. Butterworth-Heinemann, 2000.956

[142] Olgierd Cecil Zienkiewicz and Robert Leroy Taylor. The finite element method, volume 2: solid957

mechanics, volume 2. Butterworth-Heinemann, 2000.958

[143] Gaspard Zoss, Derek Bradley, Pascal Bérard, and Thabo Beeler. An empirical rig for jaw animation.959

ACM Transactions on Graphics (TOG), 37(4):1–12, 2018.960

39

