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Fig. 1. Our numerical method enables the simulation of liquids with high surface energy, such as liquid mercury. Dynamic topology changes (left, middle,

right) are naturally handled, and no special treatment is required to support one- and two-way coupling (left, middle).

We present an updated Lagrangian discretization of surface tension forces

for the simulation of liquids with moderate to extreme surface tension effects.

The potential energy associated with surface tension is proportional to the

surface area of the liquid. We design discrete forces as gradients of this

energy with respect to the motion of the fluid over a time step. We show that

this naturally allows for inversion of the Hessian of the potential energy

required with the use of Newton’s method to solve the systems of nonlinear

equations associated with implicit time stepping. The rotational invariance of

the surface tension energy makes it non-convex and we define a definiteness

fix procedure as in [Teran et al. 2005]. We design a novel level-set-based

boundary quadrature technique to discretize the surface area calculation

in our energy based formulation. Our approach works most naturally with

Particle-In-Cell [Harlow 1964] techniques and we demonstrate our approach

with a weakly incompressible model for liquid discretized with the Material

Point Method [Sulsky et al. 1994]. We show that our approach is essential for

allowing efficient implicit numerical integration in the limit of high surface

tension materials like liquid metals.
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1 INTRODUCTION

Surface tension forces are responsible for many of the most striking

features of fluid motion. Whether it be small scale droplets of water

beading [Da et al. 2016; Li et al. 2020; Thürey et al. 2010; Wojtan

et al. 2010; Yang et al. 2016], tears of wine in a glass [Azencot et al.

2015], or dynamic thin walls of a bubble [Da et al. 2015; Zhu et al.

2014], surface tension effects are indispensable tools in modern

computer graphics applications. However, materials with extremely

large surface tensions have not been explored to a great extent. For

example, mercury and other liquid metals exhibit large surface ten-

sions and yet remarkably have small viscosities [Zhao et al. 2017].

This combination of properties gives these materials characteristic

flowing and merging dynamics strongly dominated by surface ten-

sion. We develop a novel method for simulating these materials with

a Particle-In-Cell (PIC) approach [Harlow 1964] since it naturally

resolves the necessary topological changes with modest computa-

tional cost. In particular, we observe that the governing physics of

these materials are effectively hyperelastic [Bonet and Wood 2008]

and therefore we develop a Material Point Method (MPM) [Sulsky

et al. 1994] approach since this naturally allows for discretizations

based on the elastic potential energy.
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Surface tension arises from the directional biases of molecular cohe-

sion at the interface between different liquids. This can be modeled

in a continuum with potential energy proportionate to the inter-

facial surface area [Adamson and Gast 1967; Brackbill et al. 1992;

Buscaglia and Ausas 2011]. We resolve single phases of these liquids

and in this case the surface tension effect is equivalently expressed

as a traction boundary condition proportionate to the mean curva-

ture scaled outward unit normal. Much of the existing literature is

based on discretizing the curvature weighted unit normals, with the

Continuum Surface Force formulation (CSF) of Brackbill et al. [1992]

being themost influential. Notably, CSF is defined for PIC techniques

that do not inherently maintain a notion of liquid boundary. In con-

trast, techniques that resolve the liquid surface with an explicit mesh

allow for natural estimation of mean curvature from mesh connec-

tivity [Cohen-Steiner and Morvan 2003]. However, these techniques

are generally more computationally expensive. We also mention

the popular, explicit method of Enright et al. [2003], which imposes

a free surface boundary condition incorporating a surface tension

term based on curvature. Combining the second-order accurate dis-

cretization of Gibou et al. [2002] (with ghost values as appropriate)

with a particle level set [Enright et al. 2002] representation of fluids,

Enright et al. [2003] are able to estimate curvature at the interface

using standard central finite differences.

As is commonly done with hyperelastic materials, we define our

discretization directly from the potential energy [Sifakis and Barbic

2012] which, with surface tension, is simply proportionate to the

surface area. This simplified conception allows us to discretize sur-

face tension forces using particles without the need for any mesh

connectivity or explicit mean curvature estimation. Instead, wemust

track how area-weighted normals on the boundary of the domain

evolve in an updated Lagrangian view [Belytschko et al. 2013] of the

flow kinematics. We show this is comparatively simple and develop

a novel surface area quadrature approach utilizing particle derived

level sets as in [Boyd and Bridson 2012]. We note that Misztal et al.

[2013] and Clausen et al. [2013] also define their discrete surface

tension forces from surface energy; however, they do so with the

aid of an explicitly tracked surface mesh.

For liquids like water with moderate to low surface tension, it gener-

ally suffices to use explicit time integration of surface tension forces.

However, since we are interested in supporting materials with large

surface energies, we develop a fully implicit approach. In particular,

in order for an explicit method to resolve the fastest capillary wave

speeds, the time step restriction has been shown to be Δ𝑡 ≤
√︃

𝜌Δ𝑥3

2𝜋𝑘𝜎

for surface tension coefficient 𝑘𝜎 and fluid density 𝜌 [Brackbill et al.

1992; Denner and van Wachem 2015]. Therefore, an implicit time

stepping approach is very important for efficiency. Notably, while

the CSF formulation [Brackbill et al. 1992] is very effective for PIC

techniques, it does not easily generalize to implicit time stepping.

In fact although semi-implicit treatments of surface tension forces,

e.g. using a quadratic fit to the surface tension energy [Bänsch

2001; Misztal et al. 2013; Zheng et al. 2015] or by approximating

the surface tension with mean curvature flow [Eckstein et al. 2007;

Hysing 2006; Schroeder et al. 2012; Sussman and Ohta 2009; Thürey

et al. 2010], are relatively common, fewer works such as Zheng et

al. [2015] and Jarauta et al. [2018] take a fully implicit approach.

However, Jarauta et al. [2018] only consider static Lagrangian mesh

topology and cannot resolve the necessary topological changes that

occur during flow, and Zheng et al. [2015] require nontrivial effort

to process topology changes since they seek a volume-conserving

scheme. In a slightly different setting, a fully-implicit approach for

surface tension using triangle-mesh-based areas is found in Batty

et al. [2012], which has some precedent in explicit techniques such

as Wojtan and Turk [2008].

Implicit time stepping requires solution of a root finding (or equiv-

alently minimization [Gast et al. 2015]) problem to solve for the

discrete momentum balance. We solve these systems using New-

ton’s method. However, the rotational invariance of the potential

energy gives rise to discrete forces with indefinite Hessians. Given

the similarity to hyperelasticity, we define a novel definiteness fix as

in [Kim et al. 2019; Smith et al. 2019; Teran et al. 2005] to the surface

tension force Hessian that allows for application of the conjugate

gradient method in solving the linearized system at each Newton

iteration. We summarize our contributions as

• Anupdated Lagrangian discretization of surface tension forces

defined as the gradient of the surface energy with respect to

the flow over a time step.

• A particle/level set based boundary particle quadrature rule

for computing the surface area of a collection of discrete

particles.

• Expressions for the eigenvalues and eigenvectors of the bound-

ary quadrature surface tension energy Hessian which is used

for a definiteness fix procedure as in [Teran et al. 2005].

2 RELATED WORK

We briefly discuss existing work related to the simulation of liquids

with surface tension effects. We roughly divide discussion in terms

of methods that use a Lagrangian mesh, those that use semi-implicit

time stepping, and those that use particle-based discretization.

Surface tracking and Lagrangianmeshes: Surface tracking tech-

niques that resolve the liquid surface with explicit mesh topology

have many advantages for surface tension effects since they accu-

rately allow for curvature estimation and boundary application [Da

et al. 2016; Müller 2009; Wojtan et al. 2010]. Brochu et al. [2010] use

the surface tracking formulation of Brochu and Bridson [2009] to ex-

plicitly track topological changes of the liquid interface. This allows

them to accurately resolve surface tension boundary conditions with

a cut-cell Voronoi discretization based on the embedded tetrahe-

dron formulation of Batty et al. [2010]. Sin et al. [2009] and De Goes

et al. [2015] use similar Voronoi-based discretizations. While the

previously mentioned techniques use an accompanying volumetric,

usually Eulerian, discretization, Da et al. [2016] use a boundary ele-

ment formulation with fluid represented by a tracked triangulation

of its boundary. They use the surface tracking formulation of Da et

al. [2014] to resolve merging and pinching behaviors. Thürey et al.
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[2010] also use a surface tracking approach and build on the formu-

lation of Sussman and Ohta [2009] and implicit mean curvature flow

approach of Eckstein et al. [2007]. Misztal et al. [2013] also define the

surface tension force as the gradient of the surface area. They build

on [Misztal and Bñrentzen 2012] to develop an implicit approach for

tetrahedron-based incompressible flows with surface tension. Wicke

et al. [2010] use dynamic topology tetrahedron meshes. Zhu et al.

[2014] use dynamic codimensional simplicial meshes to resolve thin

sheets, filaments and droplets. They use the surface tension force

approach of Zheng et al. [2015] combined with a novel rim-based

surface tension on the boundary of thin sheets.

Particle based methods: PIC based approaches to fluid flow simu-

lation are well established in the graphics community [Ando et al.

2013; Bridson 2008; Mercier et al. 2015]. Brackbill et al. [1992] devel-

oped the Continuum Surface Force (CSF) approach for PIC which

defines normals and curvatures as gradients of color functions (de-

fined on the grid after transferring from particles). The surface

tension force is effectively regularized as color function transitions

over a few cell widths. Müller [2003] et al. also use the gradient

of a color function in a per-particle manner based on the work of

Morris [2000], which is a generalization of the CSF model of Brack-

bill et al. [1992] to SPH. CSF has a number of drawbacks, including

that: normalization of the color gradient is noisy for internal par-

ticles, curvature estimation is very sensitive to particle sampling

uniformity and CSF forces are not exactly conservative. [Akinci

et al. 2013; Becker and Teschner 2007; Clavet et al. 2005]. Yu et

al. [2012] use surface tracking with SPH to define surface tension

forces. In general, the determination of which particles should be

considered to be on the boundary of a particle-based domain is an

open problem [Dilts 2000; Haque and Dilts 2007; He et al. 2012;

Sandim et al. 2016; Zhang et al. 2008; Zorilla et al. 2020]. Orthmann

et al. [2013] use a discrete delta function approach with SPH to

define particle-based surface area. Müller et al. combine SPH with

surface tracking [Müller 2009]. Lastly, although our approach is

the first fully implicit MPM discretization of surface tension, there

are many existing fully implicit MPM discretizations of elastoplas-

tic materials [Fei et al. 2018; Stomakhin et al. 2013; Wang et al. 2020].

Implicit Surface Tension: Popinet [2018] provides a useful re-

view of implicit surface tension techniques. Bänsch et al. [2001]

use a semi-implicit approach akin to one step of Newton iteration

with an explicit mesh, FEM discretization of a surface energy-based

formulation. Hysing [2006] uses a semi-implicit approach based

on a variational CSF. Sussman and Ohta [2009] also use a semi-

implicit approach based on mean curvature flow. Although these

approaches are not fully implicit, Popinet [2018] shows they are

equivalent to the addition of a surface viscosity that damps capillary

waves and leads to an 𝑂 (Δ𝑥) time step. Hochstein and Williams

[1996] developed one of the first implicit approaches for surface

tension between two phases. Hou et al. [1994] add and subtract

a Laplacian term as an approximation to the surface tension Hes-

sian in a boundary integral formulation. Jarauta et al. [2018] use a

Lagrangian formulation of incompressible flow and treat surface

tension in a fully implicit manner. Zheng et al. [2015] develop a

hybrid particle/grid based implicit technique for surface tension

Fig. 2. We use an updated Lagrangian view of the flow map with either Ω0

or Ω𝑠 used as a reference configuration. We demonstrate our notation for

the kinematic flow quantities used in this formulation.

with a three-dimensional version of Schroeder et al. [2012] using a

triangle mesh to discretize the surface tension force.

3 FLOW KINEMATICS

We use a continuum assumption [Gonzalez and Stuart 2008] and

associate the spatial location of material at time 𝑡 with subsets

Ω
𝑡 ⊂ R𝑑 , 𝑑 = 2, 3. Material motion is described by a flow map

𝝓 : Ω0×[0,𝑇 ] → R𝑑 that defines trajectories of continuum particles

of material (X ∈ Ω
0) to their time 𝑡 locations (x ∈ Ω

𝑡 ) as 𝝓 (X, 𝑡) = x.

Here we use Ω𝑡
=

{

x ∈ R𝑑 | ∃X ∈ Ω
0 such that x = 𝝓 (X, 𝑡)

}

to de-

note the time 𝑡 configuration of the material, where Ω
0
= {X} is

the initial configuration of the material (see Figure 2).

Material velocity is obtained by differentiation in time V =
𝜕𝝓
𝜕𝑡 .

Differentiation in space defines the deformation gradient F =
𝜕𝝓
𝜕X

which captures the degree of non-rigidity of the motion. For ex-

ample, rigid body motion is characterized by a spatially constant,

orthogonal matrix F. We use 𝐽 = det(F) to denote the deformation

gradient determinant. Intuitively, 𝐽 is the ratio of an initial infini-

tesimal volume at time 𝑡 (𝑑𝑣) to its preimage under the flow (𝑑𝑉 ) in

the initial configuration (see Figure 2). For example, incompressible

flow is characterized by motion with 𝐽 = 1.

3.1 Eulerian and updated Lagrangian Kinematics

Quantities like 𝝓, 𝐽 and F defined over the reference configura-

tion Ω
0 are typically referred to as Lagrangian. However, since

the configurations Ω0 and Ω
𝑡 are equivalent under the flow, we can

write quantities over Ω𝑡 as well. This change of variables defines

what are typically referred to as Eulerian quantities. For example,

the Eulerian velocity is related to the Lagrangian velocity through

v(𝝓 (X, 𝑡), 𝑡) = V(X, 𝑡) and 𝜕v
𝜕𝑡 (𝝓 (X, 𝑡), 𝑡)+

𝜕v
𝜕x (𝝓 (X, 𝑡), 𝑡)

𝜕𝝓
𝜕𝑡 (X, 𝑡) =

𝜕V
𝜕𝑡 (X, 𝑡). This can also be done with the inverse flow map 𝝓−1

as v(x, 𝑡) = V(𝝓−1 (x, 𝑡), 𝑡) [Gonzalez and Stuart 2008]. It is this

relation that motivates the definition of the material derivative
𝐷v
𝐷𝑡 (x, 𝑡) =

𝜕V
𝜕𝑡 (𝝓−1 (x, 𝑡), 𝑡). Some quantities like mass density 𝜌

are most commonly defined as Eulerian quantities. We refer to the

Lagrangian counterpart of the mass density as 𝑅 : Ω0 × [0,𝑇 ] → R
with 𝑅(X, 𝑡) = 𝜌 (𝝓 (X, 𝑡), 𝑡).
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Another variation of the Lagrangian view is updated Lagrangian [Be-

lytschko et al. 2013]. In this case, quantities are written over an inter-

mediate configuration Ω
𝑠 with 𝑠 < 𝑡 (see Figure 2). For example, the

velocity can be written as v̂(x̃, 𝑡) = V(𝝓−1 (x̃, 𝑠), 𝑡) for x̃ ∈ Ω
𝑠 . This

quantity is essentially Lagrangian; for example, its time derivative

does not require a material derivative 𝜕v̂
𝜕𝑡 (x̃, 𝑡) =

𝜕V
𝜕𝑡 (𝝓−1 (x̃, 𝑠), 𝑡)

since the term 𝝓−1 (x̃, 𝑠) does not vary with time, as in the Euler-

ian case. We build our temporal discretization from the updated

Lagrangian view. We will generally use upper case to denote La-

grangian quantities, hat superscript (with lower case) to denote

updated Lagrangian quantities, and lower case for Eulerian quanti-

ties, e.g. V ⇐⇒ v̂ ⇐⇒ v. We will make considerable use of the

updated Lagrangian flow map �̂� (x̃, 𝑡) = 𝝓 (𝝓−1 (x̃, 𝑠), 𝑡)). Intuitively,
this is the mapping from the time 𝑠 configuration Ω

𝑠 to the time 𝑡

configuration Ω
𝑡 under the flow.

4 CONSERVATION OF MASS AND MOMENTUM

The governing equations for the physical system are obtained from

conservation of mass and momentum. These are most commonly

written in Eulerian form as

𝜌
𝐷v

𝐷𝑡
= −∇𝑝 + 𝜌g,

𝐷𝜌

𝐷𝑡
= −𝜌∇ · v, x ∈ Ω

𝑡 . (1)

with boundary conditions defined from surface tension 𝑝 = 𝑘𝜎𝜅, x ∈
𝜕Ω𝑡

𝑁
and/or prescribed velocity v · n = 𝑣𝑛

bc
, x ∈ 𝜕Ω𝑡

𝐷
(see Figure 2).

Here 𝜅 is the mean curvature and 𝑘𝜎 the coefficient of surface ten-

sion [Adamson and Gast 1967]. Furthermore, 𝑝 is the pressure in

the fluid and g is the gravitational acceleration.

In order to penalize compressibility of the liquid, we use the con-

stitutive relation 𝑝 = −𝑘𝑝 ( 𝑗 − 1) where 𝑘𝑝 is the bulk modulus

and 𝑗 (x, 𝑡) = 𝐽 (𝝓−1 (x, 𝑡), 𝑡) is the Eulerian deformation gradient

determinant. Intuitively, larger values of the bulk modulus penalize

compressible flow (𝐽 ≠ 1) more severely.

4.1 Variational form and potential energy

Our discretization of the momentum balance in Equation (1) is

based on the potential energy of the material. The potential energy

associated with surface tension is proportionate to the surface area

of thematerial as it evolves in the flow [Adamson and Gast 1967].We

use Ψ𝑠 (𝝓 (·, 𝑡)) to denote the total surface tension potential energy

at time 𝑡 under the flow map

Ψ
𝑠 (𝝓 (·, 𝑡)) = 𝑘𝜎

∫

𝜕Ω𝑡
𝑑𝑠 (x) = 𝑘𝜎

∫

𝜕Ω𝑠
|𝐽 F̂−𝑇 ñ|𝑑𝑠 (x̃) . (2)

Here 𝑘𝜎 is the coefficient of surface tension. Increasing values of

the surface tension coefficient correspond to materials with large

surface energies like water drops at small scales or liquid metals.

We note that in Equation (2) the integral over 𝜕Ω𝑡 can be written as

one over 𝜕Ω𝑠 using the surface integral change of variables, where

ñ is the outward unit normal to the initial material boundary (see

Figure 2). Here |𝐽 F̂−𝑇 ñ| can be shown to be the ratio of infinitesimal

surface areas in the current (𝑑𝑠) and time 𝑠 (𝑑𝑠) configurations. The

pressure and gravitational forces in the liquid can also be defined

from their associated potential energies

Ψ
𝑝 (𝝓 (·, 𝑡)) =

∫

Ω0

𝑘𝑝

2
(𝐽 − 1)2𝑑X, Ψ𝑔 (𝝓 (·, 𝑡)) =

∫

Ω0

𝝓 · 𝑅𝐽g𝑑X.
(3)

For the pressure and surface tension potential energies, we also

define the following potential energy densities

Ψ̂
𝑝 (𝐽 ) = 𝑘𝑝

2
(𝐽 − 1)2, Ψ̂

𝑠 (F̂, 𝑑A) = 𝑘𝜎 |𝐽 F̂−𝑇𝑑A|.

The momentum balance in Equation (1), including the surface ten-

sion and velocity boundary conditions, is equivalent to the varia-

tional form
∫

Ω𝑡
𝜌𝑤𝛼

𝐷𝑣𝛼

𝐷𝑡
𝑑x = − 𝑑

𝑑𝜖
PE(0;w), ∀w : Ω𝑡 → R𝑑

w · n = 0, x ∈ 𝜕Ω𝑡
𝐷

(4)

where PE(𝜖 ;w) = Ψ
𝑠 (�̂� (·, 𝑡) +𝜖ŵ) +Ψ𝑝 (𝝓 (·, 𝑡) +𝜖W) +Ψ𝑔 (𝝓 (·, 𝑡) +

𝜖W) for ŵ(x̃) = w(�̂� (x̃, 𝑡)) and W(X) = w(𝝓 (X, 𝑡)). This is ob-
tained by taking the dot product of the momentum balance with

𝑤𝛼 and integrating over Ω𝑡 , as well as integration by parts. The left

hand side of Equation (4) can be written in the updated Lagrangian

view by changing variables to Ω
𝑠 with 𝑠 < 𝑡 resulting in

∫

Ω𝑡
𝜌𝑤𝛼

𝐷𝑣𝛼

𝐷𝑡
𝑑x =

∫

Ω𝑠
𝜌�̂�𝛼

𝜕𝑣𝛼

𝜕𝑡
𝐽𝑑x̃ (5)

where 𝜌 (x̃, 𝑡) = 𝜌 (�̂� (x̃, 𝑡), 𝑡).

5 DISCRETIZATION

We approximate the governing equations with MPM and APIC

[Jiang et al. 2015, 2016; Sulsky et al. 1994]. To discretize in space at

time 𝑡𝑛 we use particle samples x𝑛𝑝 of the domain Ω
𝑡𝑛 . Each particle

also approximates the deformation gradient determinant 𝐽𝑛𝑝 and

velocity near the particle in terms of constant v𝑛𝑝 and affine velocity

A𝑛
𝑝 . The initial mass𝑚𝑝 = 𝜌 (x0𝑝 , 0)𝑉 0

𝑝 and volume𝑉 0
𝑝 are also stored.

Note that mass does not change with time since it is conserved and

the time 𝑡𝑛 volume of the particle can be inferred from the defor-

mation gradient determinant as 𝑉𝑛
𝑝 = 𝐽𝑛𝑝𝑉

0
𝑝 . We extend traditional

MPM by adding massless particles x𝑛𝑞 with boundary area samples

𝑑A𝑛
𝑞 for surface tension energy quadrature (see Figure 3 and Sec-

tion 5.1). These samples are added at the beginning of each time step

and removed at the end. By their massless nature, this resampling

does not affect conservation of mass and momentum.

We first transfer the time 𝑡𝑛 particle mass and momentum to the

grid using APIC transfers [Jiang et al. 2015] with quadratic B-spline

interpolating functions 𝑁i (x) = 𝑁 (x − xi) defined on the Eulerian

grid nodes xi as

𝑚𝑛
i =

∑︁

𝑝

𝑚𝑝𝑁i (x𝑛𝑝 ), 𝑚𝑛
i v

𝑛
i =

∑︁

𝑝

𝑚𝑝𝑁i (x𝑛𝑝 )
(

v𝑛𝑝 + A𝑛
𝑝 (xi − x𝑛𝑝 )

)

.

(6)

Note that we do not sum over the surface particles since they have

no mass. Next we update grid momentum by discretizing the right

hand side of Equation (5) with 𝑠 = 𝑡𝑛 as
∫

Ω𝑠
𝜌�̂�𝛼

𝜕𝑣𝛼

𝜕𝑡
𝐽𝑑x̃ ≈

∫

Ω𝑡𝑛
𝜌�̂�𝛼

𝑣𝛼 (x̃, 𝑡𝑛+1) − 𝑣𝛼 (x̃, 𝑡𝑛)
Δ𝑡

𝐽𝑑x̃. (7)

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



An Implicit Updated Lagrangian Formulation for Liquids with Large Surface Energy • 1:5

Here we use a backward difference in time. To discretize in space,

we approximate 𝑣𝛼 , 𝑣𝛼 and �̂�𝛼 using the quadratic B-splines as

𝑣𝛼 (x̃, 𝑡𝑛) = 𝑣𝑛i𝛼𝑁i (x̃), 𝑣𝛼 (x̃, 𝑡𝑛+1) = 𝑣𝑛+1i𝛼 𝑁i (x̃) and �̂�𝛼 = 𝛿𝛽𝛼𝑁i (x̃)
respectively. The integral (7) then becomes

(∫

Ω𝑡𝑛
𝜌 𝐽𝑁i𝑁j𝑑x̃

) 𝑣𝑛+1
i𝛽

− 𝑣𝑛
i𝛽

Δ𝑡
.

We approximate the integral using the MPM particles as quadrature

points:
∫

Ω𝑡𝑛
𝜌 𝐽𝑁i𝑁j𝑑x̃ ≈

∑︁

𝑝

𝜌 (x𝑛𝑝 , 𝑡𝑛+1) 𝐽 (x𝑛𝑝 , 𝑡𝑛+1)𝑉𝑛
𝑝 𝑁i (x𝑛𝑝 )𝑁j (x𝑛𝑝 )

=

∑︁

𝑝

𝑅(X𝑝 , 𝑡
𝑛+1) 𝐽 (X𝑝 , 𝑡

𝑛+1)𝑉 0
𝑝 𝑁i (x𝑛𝑝 )𝑁j (x𝑛𝑝 )

=

∑︁

𝑝

𝑅(X𝑝 , 𝑡
0)𝑉 0

𝑝 𝑁i (x𝑛𝑝 )𝑁j (x𝑛𝑝 )

=

∑︁

𝑝

𝑚𝑝𝑁i (x𝑛𝑝 )𝑁j (x𝑛𝑝 )

where 𝑅 is the Lagrangian mass density defined by 𝑅(X𝑝 , 𝑡) =

𝜌 (𝝓 (X𝑝 , 𝑡), 𝑡), and X𝑝 = 𝝓−1 (x𝑛𝑝 , 𝑡𝑛) = x0𝑝 . If we replace this in-

tegral with the lumped mass approximation by summing on the

index j, we obtain the mass transfer in (6).

In order to update the grid momentum (and thus compute 𝑣𝑛+1
i𝛽

)

we first discretize the total potential energy using the MPM points

for quadrature:

𝑒 (x̂) =
∑︁

𝑝

Ψ̂
𝑝
(

𝐽𝑛+1𝑝 (x̂)
)

𝑉𝑛
𝑝 +

∑︁

𝑞

Ψ̂
𝑠
(

F̂𝑞 (x̂) , 𝑑A𝑞

)

≈ PE(0;w).

Note that the massless surface tension particles are used in this

discretization. We use x̂ to denote the vector of all potentially moved

grid node positions x̂i where the functions 𝐽
𝑛+1
𝑝 (x̂), 𝐹𝑞 (x̂) are given

by

𝐽𝑛+1𝑝 (x̂) =
(

1 + (x̂i − xi) ·
𝜕𝑁i

𝜕x
(x𝑛𝑝 )

)

𝐽𝑛𝑝 , F̂𝑞 (x̂) = x̂i
𝜕𝑁𝑇

i

𝜕x
(x𝑛𝑞 ).

The force on grid node i is then fi (x̂) = − 𝜕𝑒
𝜕x̂i

(x̂) and the update for

the grid momentum is then

𝑚𝑛
i

v̂𝑛+1i − v𝑛i
Δ𝑡

= fi (x + Δ𝑡 q̂) +𝑚𝑛
i g, (8)

where q̂ = 0 for explicit time integration and q̂ = v̂𝑛+1 for back-
ward Euler time integration. As with x̂, the vector v̂𝑛+1 contains the
corresponding velocity vectors defined on each grid node. Further-

more, x is the vector of all unmoved grid node locations xi. The 𝛼

component of the force on grid node i is then

𝑓i𝛼 (x̂) = −
∑︁

𝑝

𝜕Ψ̂𝑝

𝜕𝐽
(𝐽𝑛+1𝑝 (x̂)) 𝜕𝑁i

𝜕𝑥𝛼
(x𝑛𝑝 ) 𝐽𝑛𝑝𝑉𝑛

0

−
∑︁

𝑞

𝜕Ψ̂𝑠

𝜕𝐹𝛼𝛾
(F̂𝑞 (x̂), 𝑑A𝑞)

𝜕𝑁i

𝜕𝑥𝛾
(x𝑛𝑞 ).

(9)

Fig. 3. (Left)MPM fluid particles (dark blue) give rise to a level set isocontour

(red). (Right) The isocontour is of the level set formed by the union of each

fluid particle’s spherical level set. Surface tension forces are evaluated at

sample points (open red circles) placed on the isocontour face.

After the grid update, we use APIC to transfer from grid to particles

v𝑛+1𝑝 =

∑︁

i

𝑁i (x𝑛𝑝 )v̂𝑛+1i , A𝑛+1
𝑝 =

4

Δ𝑥2

∑︁

i

𝑁i (x𝑛𝑝 )v̂𝑛+1i (xi − x𝑛𝑝 )𝑇 .

(10)

The particles are then updated to their time 𝑡𝑛+1 positions via

x𝑛+1𝑝 = x𝑛𝑝 + Δ𝑡v𝑛+1𝑝 . The MPM discretization using APIC trans-

fers is summarized in Algorithm 1.

ALGORITHM 1: Time integration loop for MPM simulations using

APIC transfers.

begin Particle-to-Grid Transfers
Transfer time 𝑡𝑛 mass to grid by evaluating Equation 6,

𝑚𝑛
i =

∑

𝑝 𝑚𝑝𝑁i (x𝑛𝑝 ) ;
Transfer time 𝑡𝑛 momentum to grid by evaluating Equation 6,

𝑚𝑛
i v

𝑛
i =

∑

𝑝 𝑚𝑝𝑁i (x𝑛𝑝 )
(

v𝑛𝑝 + A𝑛
𝑝 (xi − x𝑛𝑝 )

)

;

end

begin Momentum Update

Update momentum on the grid from 𝑡𝑛 to 𝑡𝑛+1 by solving

Equation 8,𝑚𝑛
i

v̂𝑛+1
i

−v𝑛
i

Δ𝑡 = fi (x + Δ𝑡 q̂) +𝑚𝑛
i g, either explicitly

(set q̂ = 0) or implicilty (set q̂ = v̂𝑛+1);
end

begin Grid-to-Particle Transfers

Evaluate time 𝑡𝑛+1 particle velocity via Equation 10,

v𝑛+1𝑝 =
∑

i 𝑁i (x𝑛𝑝 ) v̂𝑛+1i ;

Evaluate time 𝑡𝑛+1 particle affine information via Equation 10,

A𝑛+1
𝑝 =

4

Δ𝑥2

∑

i 𝑁i (x𝑛𝑝 ) v̂𝑛+1i (xi − x𝑛𝑝 )𝑇 ;
Update particle positions to 𝑡𝑛+1 via x𝑛+1𝑝 = x𝑛𝑝 + Δ𝑡v𝑛+1𝑝 ;

end

5.1 Surface Tension Boundary Sampling

Here we describe our approach for seeding the surface tension quad-

rature particles x𝑛𝑞 with area weighted normals 𝑑A𝑞 on 𝜕Ω𝑡𝑛 . As is

common in particle-based methods (e.g. [Boyd and Bridson 2012]),

we define a spherical level set around each fluid particle and union

the individual level sets to form an implicit representation 𝜑 of Ω𝑡𝑛 .

We then define 𝜕Ω𝑡𝑛 as the zero isocontour of 𝜑 . However, the iso-

contour may be relatively distant from the fluid particles due to the
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Fig. 4. (Left) The isocontour face normal with each sampled point being pro-

vided a surface area-weighted normal. (Right) The isocontour face normals

and areas are updated with the mapping between 𝑡𝑛 and 𝑡𝑛+1.

level set radii of the particles (typically set as approximately .4Δ𝑥 ),

which can lead to e.g. particle distribution artifacts. We uniformly

shift 𝜑 by a multiple of Δ𝑥 (typically we choose .2Δ𝑥) before com-

puting the isocontour to account for this (see Figure 3). Additionally,

we found that performing one iteration of Laplace smoothing on 𝜑

resulted in smoother isocontours which is more desirable for surface

tension forces. Simply adding a shift to the level set does this as well,

but we found that only shifting led to a more jagged zero isocontour

and that a combination of both shifting and smoothing gave better

results in practice.

After creating the isocontours, we sample x𝑛𝑞 and 𝑑A𝑞 on each

face (see Figure 3). In two dimensions, we sample equally-spaced

points along each face, using a number of points that yield ap-

proximately constant distances between sample points across the

entire isocontour. In three dimensions, we select face sample points

using random barycentric coordinates. We choose the number of

points sampled per face in order to achieve approximately evenly

distributed sample points over 𝜕Ω𝑡𝑛 . In both two and three dimen-

sions, we assign the surface area-weighted normal 𝑑A𝑞 such that

the surface area of an isocontour face is evenly distributed among

sample points on that face and the direction is the isocontour face

normal (see Figure 4). Figure 5 shows that this novel quadrature

rule is at least first-order accurate under spatial refinement for the

case of a 2D disc of radius 0.2m filled with 64 random particles per

grid cell and 10 boundary particles sampled per isocontour face.
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Fig. 5. Convergence of the total estimated surface area
∑

𝑞 |𝑑A𝑞 | as the
background grid is refined for a 2D disc.

5.2 Fully-Implicit Formulation

In the implicit case, summarized in Algorithm 2, we solve Equation

(8) with q̂ = v̂𝑛+1,

𝑚𝑛
i

𝑣𝑛+1i𝛼 − 𝑣𝑛i𝛼
Δ𝑡

= 𝑓i𝛼 (x + Δ𝑡 v̂𝑛+1) +𝑚𝑛
i 𝑔𝛼 ,

for v̂𝑛+1 using Newton’s method. We solve the resulting system

using conjugate gradient. This requires the derivative of the force

𝜕𝑓i𝛼

𝜕𝑥j𝛽
(x̂) = −

∑︁

𝑝

𝜕2Ψ̂𝑝

𝜕𝐽 2

(

𝐽𝑛𝑝 (x̂)
)

𝐽𝑛𝑝
𝜕𝑁i

𝜕𝑥𝛼
(x𝑛𝑝 ) 𝐽𝑛𝑝

𝜕𝑁j

𝜕𝑥𝛽
(x𝑛𝑝 )𝑉𝑛

𝑝

−
∑︁

𝑞

𝜕2Ψ̂𝑠

𝜕𝐹𝛽𝛿 𝜕𝐹𝛼𝛾

(

F̂𝑛𝑞 (x̂) , 𝑑A𝑞

) 𝜕𝑁i

𝑥𝛾
(x𝑛𝑞 )

𝜕𝑁j

𝑥𝛿
(x𝑛𝑞 ).

The Hessian 𝜕2Ψ̂2/𝜕F̂2 of the surface tension energy density is indef-
inite in three dimensions. However, we can analytically determine

its eigenstructure as in Table 1. In the table, b1 and b2 are any unit

Table 1. Complete eigenstructure of the Hessian of the surface tension

energy density 𝜕2Ψ̂2/𝜕F̂2.

Eigenvalue Eigenvectors

𝑘𝜎 |𝑑A|
1√
2
b1 ⊗ b2 + 1√

2

(

𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

× b1

)

⊗
(

𝑑A
|𝑑A | × b2

)

1√
2
b1 ⊗

(

𝑑A
|𝑑A | × b2

)

− 1√
2

(

𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

× b1

)

⊗ b2

−𝑘𝜎 |𝑑A|
1√
2
b1 ⊗ b2 − 1√

2

(

𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

× b1

)

⊗
(

𝑑A
|𝑑A | × b2

)

1√
2
b1 ⊗

(

𝑑A
|𝑑A | × b2

)

+ 1√
2

(

𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

× b1

)

⊗ b2

𝑘𝜎
|𝑑A |2
�

�𝐽 F̂−𝑇
�

�

�

�F̂w1

�

�

2 𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

⊗ w0

𝑘𝜎
|𝑑A |2
�

�𝐽 F̂−𝑇
�

�

�

�F̂w0

�

�

2 𝐽 F̂−𝑇
�

�𝐽 F̂−𝑇
�

�

⊗ w1

0

u0 ⊗ 𝑑A
|𝑑A |

u1 ⊗ 𝑑A
|𝑑A |

u2 ⊗ 𝑑A
|𝑑A |

vectors orthogonal to 𝑑A and 𝐽 F̂−𝑇 respectively, w0 and w1 are any

orthonormal vectors orthogonal to 𝑑A satisfying F̂w0 · F̂w1 = 0, and

u0, u1, and u2 are any orthonormal basis for R3. We refer readers

to the supplementary material [Hyde et al. 2020] for a proof. Note

that there is one negative eigenvalue with multiplicity two and a

zero eigenvalue with multiplicity three. We perform a definiteness

fix as in [Kim et al. 2019; Smith et al. 2019; Teran et al. 2005] by

clamping these negative eigenvalues to 0. The corresponding term

in the Jacobian matrix for Newton’s method will then be positive

semi-definite.

5.3 Hydrostatic Solution

Unlike many Eulerian fluid simulations, it is non-trivial to obtain a

hydrostatic solution for a fluid at rest when the fluid is represented
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ALGORITHM 2: Solving Equation 8 implicitly, i.e. using q̂ = v̂𝑛+1,
as part of the overall time integration loop in Algorithm 1.

Set initial guess w0 for v̂𝑛+1, e.g. w0
= 0;

while not converged do

begin Solve Newton system
1. Compute Newton residual via

𝑟i𝛼 (w) =𝑚𝑛
i

wi𝛼−𝑣𝑛
i𝛼

Δ𝑡 − 𝑓i𝛼 (x + Δ𝑡w) −𝑚𝑛
i 𝑔𝛼 ;

2. Form system
𝜕𝑟i𝛼
𝜕𝑤j𝛽

(

w𝑘
)

𝛿𝑤𝑘
j𝛽

= −𝑟i𝛼
(

w𝑘
)

;

3. Apply definiteness fix if desired by subtracting the

product of the negative eigenvalues with the

corresponding eigenvectors (see Table 1) from the system;

4. Perform CG on current system to obtain 𝛿w𝑘 ;

5. Update Newton iterate as w𝑘+1
= w𝑘 + 𝛿w𝑘 ;

end

end

Set v̂𝑛+1 to be the converged Newton iterate w𝑘 ;

with particles, as in MPM. In order to achieve the hydrostatic solu-

tion (to within machine precision), the following equation must be

satisfied exactly:

−
∫

Ω

𝑁i
𝜕𝑝

𝜕𝑥𝛼
𝑑x +

∫

Ω

𝜌𝑔𝛼𝑁i𝑑x = 0,

which arises from the balance of the internal and gravitational forces

in the conservation of momentum (see [Hyde et al. 2020]). Given

our expression for Ψ𝑝 , we show that we can choose the initial par-

ticle locations and volumes as a combination of Gauss quadrature

points/volumes and random points/volumes since the integrands

are of order 4 in two dimensions and 6 in three dimensions. It suf-

fices to use Gauss points alone; however this biases the simulation

with unwanted and persistent particle structure.

We build on [Patterson et al. 2012] and determine our quadrature

rule from the least squares approximation to the bi-quadratic/tri-

quadratic integrals forming the linear system C = Aw with C being

the evaluated integrals of the monomial basis, A being the matrix of

integrands/monomials evaluated at each particle position, andw be-

ing the unknown quadrature volumes. To obtain a positive solution

to this system as required, we solve the following KKT system that

minimizes 𝑘 (𝑤𝑖 − 𝑉𝑐
𝑁𝑝

)2 subject to the constraint C = Aw, where𝑉𝑐

is the total volume of a grid cell, 𝑁𝑝 is the number of particles in a

given cell, and 𝑘 > 0 is a scalar:

[

𝑘 A𝑇

A 0

] [

w

𝝀

]

=

[

𝑉𝑐
𝑁𝑝

C

]

.

For more details on the derivation and solution of the KKT system,

we refer readers to the supplementary material [Hyde et al. 2020].

To validate our treatment of the hydrostatic case, we ran a two-

dimensional simulation of a tank partially filled with static fluid

for 1,000 time steps using the explicit formulation of MPM with a

maximum Δ𝑡 of 1 × 10−3s. We measured an 𝐿∞-norm error in fluid

particle velocity of 2.04 × 10−12 (near machine precision). With the

same example under the implicit MPM formulation, no numerical

Fig. 6. A static 3D tank after 1,000 time steps with (top) andwithout (bottom)

our hydrostatic initialization.

error is incurred. This is because we use a zero initial guess for

the updated velocity vector in the linear solves during the Newton

iterations, which converges with no numerical operations since the

initial guess is the solution; hence an exactly zero state is maintained

throughout the simulation. The effect of our hydrostatic formulation

is demonstrated in Figure 6, which shows a 3D standing pool after

1,000 time steps (Δ𝑡 = 1 × 10−3s) with our hydrostatic initialization

and with random initialization (both surfaces start flat).

5.4 Stability

On a related note, we emphasize that spurious particle velocities or

parasitic currents can develop in situations such as a stationary two-

dimensional circle of randomly-sampled particles in zero gravity.

We simulate such a scenario with circle radius 0.1m, a large surface

tension coefficient 𝑘𝜎 = 10.0, grid resolution Δ𝑥 = 1/31, time step

Δ𝑡 = 1× 10−4s, and 16 particles per cell using implicit MPM; results

are shown in Figure 7. The experiment also simulates a translating

circle under similar conditions. We hypothesize that some of the

small, oscillatory, but spurious currents that develop are due to the

particles imperfectly sampling a circular geometry, though other

factors such as Δ𝑥 and Δ𝑡 also have an influence; studying these

effects is interesting future work.

We also evaluate the stability of our method when run using

explicit, semi-implicit (one Newton iteration), and implicit formula-

tions of MPM. For this stability experiment, we simulate an oscillat-

ing 2D ellipse using various Δ𝑥 and various Δ𝑡 , and assess whether

each result is stable, unstable, or has significant artifacts; see Ta-

ble 3. The distinction between stable and unstable can be unclear

when using semi-implicit time stepping. Often these simulations

do not technically go unstable, but instead exhibit unacceptable

artifacts associated with failure to reduce the non-linear residual

of the backward Euler system. We demonstrate these artifacts in

Figure 8 where examples of stable and artifact-ridden results for

implicit and semi-implicit time stepping are shown along with a

comparison of plots of the backward Euler residual evaluated at

each time step.

5.5 One- and Two-Way Coupling

Our modification of MPM to accommodate high surface energy flu-

ids naturally allow use of existing techniques for one- and two-way

coupling. One-way coupling can be achieved by specifying back-

ground grid nodes where boundary conditions such as zero normal

velocity are defined, and then applying those boundary conditions
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(a) 𝑡 = 0s (b) 𝑡 = 0.25s (c) 𝑡 = 0.5s

(d) 𝑡 = 0s (e) 𝑡 = 0.25s (f) 𝑡 = 0.5s
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Fig. 7. (Top) An initially stationary circle over time, with Δ𝑡 = 1 × 10−4s
and 𝑘𝜎 = 10.0. Particles are colored by speed from 0m/s (green) to 0.1m/s

(red). (Middle) A translating circle with initial velocity (0.1, 0.2)m/s. (Bottom)

Maximum relative speeds of particles in the static and translating circles.

between the particle-to-grid and grid-to-particle transfers. For two-

way coupling between fluids and elastic meshes, we leverage the

Lagrangian force framework of [Jiang et al. 2015].

6 EXAMPLES

We demonstrate the effectiveness and simplicity of our approach

with a number of examples in two and three dimensions. Unless

otherwise noted, our simulation domains are unit boxes, the bulk

modulus of the fluid is 416.67, and the isocontour shift used when

generating surface tension sample points is 0.2Δ𝑥 .

Colliding Two-Dimensional Disks: Figure 9 demonstrates the

effects of varying the surface tension coefficient 𝑘𝜎 in the case of

two two-dimensional disks of radius .125 colliding. The disks have

initial velocity ±0.4 in all cases. The top row of figures, with the

lowest surface tension (𝑘𝜎 = 0.05), demonstrates smooth topological

transitions as the disks pinch off and subsequently re-collide. As

surface tension increases (middle and bottom rows, 𝑘𝜎 = 0.1, 5.0),

the disks only merge once and oscillate with higher frequency. All

cases use a background grid with 642 cells and explicit MPM.

Qualitative Comparison with Experiment: To qualitatively as-

sess physicality of our method under extremely high surface tension

conditions, we produced a simulation (Figure 10) of a falling spher-

ical droplet with 𝑘𝜎 = 20 to match an experiment of a droplet

impacting a superhydrophobic surface. The geometry and bouncing

(a) 0s (b) 0.1s (c) 0.23s (d) 0.43s (e) 0.66s (f) 0.96s

(g) 0s (h) 0.1s (i) 0.23s (j) 0.43s (k) 0.66s (l) 0.96s
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Fig. 8. An oscillating 2D ellipse with 𝑘𝜎 = 1000, Δ𝑡 = 0.01, and Δ𝑥 = 1/128.
(Top) Implicit MPM (5 Newton iterations, 5 CG iterations). (Middle) Semi-

implicit (1 Newton iteration, 25 CG iterations). (Bottom) Semi-implicit MPM

fails to obtain a low residual for the solves and hence is more susceptible to

instability and artifacts.

and recoiling behaviors of the droplet in our simulation, run using a

background grid with 643 cells and explicit MPM with a maximum

Δ𝑡 of 1 × 10−4s, closely match those observed in the experiment.

Moreover, our simulation produces smooth, stable results despite

the significant stiffness of the problem.

Dam Break: While our novel focus is on liquids with large surface

energy, we confirm that our methodology also applies to fluids with

low or moderate surface tension forces. Figure 11 shows a dam

break flow in a cubic tank with varying surface tension coefficients,

demonstrating significant turbulent splashing effects at low 𝑘𝜎 .

Implicit MPM was used with a background grid with 643 cells and a

fixed Δ𝑡 of 2.5 × 10−4s.
Moderate Surface Tension Droplet: Similar to the previous ex-

ample, Figure 12 shows that our method can resolve interesting

dynamic behavior at moderate surface tensions as in [Da et al. 2016].

A falling droplet was simulated with 𝑘𝜎 = 0.5 using implicit MPM,

a background grid with 1283 cells, and a fixed Δ𝑡 of 5 × 10−3s. As
noted in Table 2, our simulation runs in about 5.98s per timestep

and hence about 41.8s per frame on average. The analogous exam-

ple in [Da et al. 2016] runs in a mean of 6.465s and a maximum of

108.99s per frame, though their simulation has a mean of only 1,898

vertices and 3,791 faces while our simulation has a comparatively

large particle count of over 558k. In Figure 13 we demonstrate our

approach with moderate surface energies in a comparison with the

SPH approach of Akinci et al. [2013]. We adopt their example with

a droplet falling into a pool causing a characteristic splash. Our

method is able to achieve behaviors on par with their approach.

Relaxing Ellipsoid with Gravity:We simulated a liquid mercury-

like ellipsoid which falls under gravity into a tankwhile also relaxing

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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under surface tension effects. Figure 14 demonstrates this numerical

experiment using several different values of 𝑘𝜎 , ranging from 0.025

to 1.0, on a background grid with 643 cells. Implicit MPM was used

with a Δ𝑡 between 1 × 10−3s and 1 × 10−2s. With lower surface ten-

sion coefficients, the material is highly dynamic as surface tension

forces do not significantly influence the fluid’s motion; however,

sufficiently high surface tension coefficients allow the fluid to main-

tain its original topology as it deforms much less than with lower

values of 𝑘𝜎 .

Oscillating Cube: As an example of a geometry relaxing under

surface tension forces without gravity, we considered a cube of

sidelength 0.2 with 𝑘𝜎 = 0.01. Using implicit MPM with a fixed

time step of 5 × 10−3s and a background grid with 1283 cells, Figure

15 demonstrates how the cube initially deforms into an octahe-

dral configuration, before further oscillations which eventually lead

to a spherical shape as numerical damping removes energy from

the system. Particle renderings of the fluid and massless boundary

sampling particles are also shown.

Droplets on Platforms: As an example of one-way coupling with

high surface energy liquids, we show a droplet with 𝑘𝜎 = 5.0 falling

through a series of platforms in Figure 16. A grid resolution of

64×128×64was used to accommodate a domain size of 1×2×1. The
droplet energetically recoils off the first platform and subsequently

undergoes several topology changes as the droplet separates into

two components which re-merge, eventually settling as a single

component on the ground.

Droplet on Cloth Sheet: Finally, we present a two-way coupled

example of a high surface energy liquid interacting with a thin

Lagrangian cloth mesh in Figure 17. A resolution of 643 was used

for the background grid, while the cloth mesh was simulated with

a resolution of 224 × 4 × 224 mesh particles. Fluid is seeded using

665K particles in a sphere of radius 0.15. Grid nodes surrounding

the corners of the cloth are set as fixed points to prevent velocity

from being transferred to the corresponding mesh nodes. Implicit

MPM was used with maximum and minimum Δ of 1 × 10−3 and
1 × 10−5 respectively. The bulk modulus of the fluid was set to

5,833.33 while that of the mesh was set to 20,833.33. 𝑘𝜎 was chosen

to be 1.0. Despite the stiffness of the mesh (which will result in

rapid oscillations in the absence of fluid), the fluid weighs down

the mesh and hinders its motion, while the cloth simultaneously

induces motion in the fluid as it oscillates.

Surface Tension Performance:We report wall clock time for one

time step of several of our examples in Table 2. Measurements were

performed on a machine with an Intel Xeon Platinum 8275CL CPU

running at 3.00GHz. While our implementation could be improved

(e.g. leveraging GPUs, additional parallelism, etc.), we emphasize

that the cost of incorporating our surface tension formulation is

modest, on the same order of magnitude as performing a particle-

to-grid transfer; this additional cost is dominated by generating

the isocontour and sample points where surface tension forces are

applied. Importantly, we stress that sample point generation occurs

only once per time step whether explicit or implicit MPM is used.

Thus, we observe that when using implicit MPM (which typically

takes much larger time steps than explicit), the marginal cost of our

surface tension model is quite small, anywhere from 2ś53% of the

cost of particle-to-grid transfers performed during a time step.

Table 2. Performance measurements for one time step of several of our

examples, broken down by (1) generating the sample points for evaluat-

ing surface tension forces, (2) transfer of MPM particle quantities to the

background grid, and (3) transfer of background grid quantities to MPM

particles. All times are in milliseconds. Asterisks denote that implicit MPM

was used.

Example # Cells # Part. Sampling Part.→Grid Grid→Part.

2D Disks (𝑘𝜎 = 5.0) 4K 6K 1 3 0.3

Platforms (𝑘𝜎 = 5.0) 524K 100K 82 22 7

*Ellipsoid (𝑘𝜎 = 1.0) 262K 208K 60 1723 5

*Cube 2.1M 194K 310 135 4

*Cloth 262K 866K 146 4956 22

*Moderate Droplet 2.1M 558k 321 5635 16

Implicit vs. Explicit Performance: While Table 2 suggests that

implicit MPM involves more computationally expensive time steps,

we stress that implicit MPM is able to take stable time steps orders

of magnitude larger than explicit MPM, and hence our fully implicit

formulation can be much more performant than an explicit formula-

tion needing impractically small Δ𝑡 . For instance, in the 3D ellipsoid

example, we found that modifying the surface tension coefficient to

𝑘𝜎 = 100 and the bulk modulus to 83,333.33 required a maximum

Δ𝑡 of 5 × 10−6s for explicit MPM in order to remain stable, while

implicit MPM was able to achieve stability with a maximum Δ𝑡

of 1 × 10−2s. Hence we measured an approximate 35x speedup of

implicit MPM over explicit MPM in this scenario, demonstrating the

importance of an implicit formulation for extremely stiff problems.

Rendering: Rendering of particle-based fluids is typically achieved

by using a surfacing algorithm. A common surfacing strategy is to

union spheres placed around each fluid particle, rasterize a corre-

sponding level set to a background grid, and then form an explicit

mesh of the associated zero isocontour (subsequently performing

any necessary postprocesses). We note that, conveniently, this com-

putation is highly similar to our generation of massless surface

tension particle locations at simulation time. We found that for

several of our examples, surfacing the sparse (codimension-one)

massless particles rather than the spatially dense fluid particles al-

lowed for not only faster rendering, but also smoother and more

coherent surfaces.

7 LIMITATIONS AND DISCUSSION

Instead of being fully incompressible, our formulation is based on

the compressible Euler equations with a penalty on compression.

An incompressible formulation would require the solution of a non-

linear KKT system, which would take more time to solve but may

still be preferable. Additionally, our present Newton system for

the implicit formulation is solved using conjugate gradient with

no preconditioner. This does not present a hurdle for solving the

system, as in practice we require few CG iterations per Newton

step. Nonetheless, the application of a good preconditioner could

improve convergence of the CG iteration and reduce the solve time

for each step.

Both our MPM discretization and our level-set based boundary

sampling technique are conceptually simple and hence relatively

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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(a) Frame 1 (b) Frame 12 (c) Frame 32 (d) Frame 86 (e) Frame 150

(f) Frame 1 (g) Frame 12 (h) Frame 32 (i) Frame 86 (j) Frame 150

(k) Frame 1 (l) Frame 12 (m) Frame 32 (n) Frame 86 (o) Frame 150

Fig. 9. A pair of two-dimensional circular disks collides. (Top row) With

less surface tension (𝑘𝜎 = 0.05), the disks collide, separate, then merge

again, maintaining smooth interfaces while undergoing complex topological

changes. (Middle row) Under slightly stronger surface tension (𝑘𝜎 = 0.1), the

disks combine but do not separate, instead exhibiting oscillatory stretching

behavior. (Bottom row) With much stronger surface tension forces (𝑘𝜎 = 5),

the disks collide and rapidly oscillate while remaining stable.

Table 3. Stability across different time steps and spatial resolutions
(

Δ𝑥−1 =
32, 128 and 512

)

for the example from Figure 8. Here, red squares correspond

to unstable simulations, green circles correspond to stable ones, and orange

triangles indicate that artifacts (such as spurious currents) were significant.

We see that explicit is unstable across this whole range. While semi-implicit

performs better than explicit, most of the simulations exhibited significant

artifacts compared to implicit (see Figure 8).

Explicit Semi-Implicit Implicit

Δ𝑡 32 128 512 32 128 512 32 128 512

.01

.0075

.005

.0025

.001

easy to implement in contrast to most front tracking or unstructured

discretizations which require dynamic remeshing. However, such

approaches are more capable of maintaining sharp interfaces and

are likely more accurate than ours as a result. Moreover, we note

that in our current implementation surface tension forces may still

exist when the liquid is in contact with a solid boundary since forces

are simply defined at the zero isocontour of the level set; this may be

inaccurate, and a careful treatment of adhesion forces at solid-fluid

boundaries is interesting future work.

We also note that it would be trivial to incorporate a viscosity model,

e.g. from [Ram et al. 2015], as future work. Furthermore, we are

(a) Frame 7 (b)

(c) Frame 9 (d)

(e) Frame 10 (f)

(g) Frame 12 (h)

(i) Frame 23 (j)

Fig. 10. (Left) A spherical droplet with very high surface tension coefficient

(𝑘𝜎 = 20) bounces multiple times off a surface. (Right) Comparable photos

from experiment in [Weisensee et al. 2016] (images used with permission of

author; images ©Patricia B. Weisensee et al.). Our simulation achieves quali-

tatively similar behavior despite the challenging surface tension coefficient.

interested in supporting multiple interacting materials with differ-

ent surface tension coefficients, such as the water droplet falling

on a hydrophilic or hydrophobic surface in Clausen et al. [2013].

For example, one could imagine generating level sets around each

material and adjusting the effective surface tension coefficient for

boundary particles deemed to lie along multi-material interfaces.
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(a) Frame 7 (b) Frame 25 (c) Frame 40

(d) Frame 7 (e) Frame 25 (f) Frame 40

(g) Frame 7 (h) Frame 25 (i) Frame 40

Fig. 11. A block of fluid collapses and splashes in a tank. (Top) 𝑘𝜎 = 0.001.

(Middle) 𝑘𝜎 = 10. (Bottom) 𝑘𝜎 = 100. At low to moderate surface tension, dy-

namic splashing and turbulent behaviors are observed. Particles are colored

by speed from blue (slow) to white (fast).

(a) Frame 9 (b) Frame 12

(c) Frame 15 (d) Frame 60

Fig. 12. A droplet of water with moderate surface energy (𝑘𝜎 = 0.5) hits

the ground and forms interesting ring and offshoot formations before con-

tracting back into a solid droplet, similar to the example in [Da et al. 2016].
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(e) Frame 37 (f) Frame 60 (g) Frame 81 (h) Frame 106

Fig. 16. A spherical liquid metal droplet with 𝑘𝜎 = 5.0 exhibits one-way coupled behavior as it falls on a series of fixed platforms in a rectangular domain. The

droplet separates in two and re-merges several times as it falls.

(a) Frame 4 (b) Frame 15

(c) Frame 44 (d) Frame 131

Fig. 17. A spherical fluid droplet (𝑘𝜎 = 1.0) falls on a cloth sheet with

two-way coupling between the fluid and sheet. The droplet rolls off the

sheet and splits into several disjoint components, which tend to re-merge as

the simulation progresses and the cloth sinks under the weight of the fluid.
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