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Abstract

We present a novel numerical approach to monolithic two-way fluid-structure interaction. Our formulation
applies to both sub-grid solids that may be significantly smaller than a single computational grid cell as
well as more resolved solid bodies. Importantly, we remove the non-physical ansatz of velocity equilibration
for sub-grid bodies, allowing for physically accurate behavior even though the boundary layer is drastically
under-resolved or typically even completely absent. Instead, we obtain closure by incorporating a physical
model for drag. Our coupling system has numerically advantageous properties, including symmetric positive-
definiteness, and is extensible to various interpolation schemes, enabling it to capture the exact solution in
the case of neutral buoyancy. We provide a number of numerical examples illuminating the advantages and
limitations of our approach. We close with remarks about future possibilities for pursuing advanced sub-grid
modeling as well as incorporating machine learning techniques into drag modeling.
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1. Introduction1

Solid-fluid coupling is an increasingly important topic in physical simulation as recent advances in com-2

puter hardware, networking, and numerical methods enable the computational physics community to pursue3

progressively more challenging simulation problems. Accurate two-way fluid-structure interaction, which4

captures the mutual interactions between fluid and solid components in a simulation, is key to better un-5

derstanding a wide variety of phenomena. Such phenomena may occur under significantly different physical6

conditions. For instance, one may wish to accurately couple near-laminar water flow with a buoyant ob-7

ject. Or, in a very different physical regime, one might consider simulating the hypervelocity impact of8

solid bodies immersed in a turbulent flow field. In general, considerations such as the amount of structural9

deformation, the turbulence of the flow, the size and shape of solids, and the velocity of solids and fluids10

guide the development and selection of appropriate simulation techniques.11

In this paper, our particular focus is on sub-grid solid-fluid coupling, for example, as occurs in underbody12

blasts and blast-structure interaction. In the underbody blast problem, an explosive device is detonated13

underneath a vehicle, and the resulting behavior of the vehicle body as well as the flow field that rapidly14

develops is studied; in particular, care must be given to small, high-velocity shrapnel that emanates from15

both the vehicle and the explosive. Blast-structure interaction considers the effects, such as spallation, of an16

explosive blast impinging on a building or other structure. Experiments have demonstrated the importance of17

small solid particles in these scenarios [31, 46]. However, even with recent advances in hardware, networking,18

algorithms, etc., resolving the interface between these small solid particles and the fluid is intractable; in19

fact, for problems with disparate scales, it may be impractical to have any grid or sample points in the20

solid-fluid boundary layer. Sub-grid solids exacerbate these issues, especially when the solids are so small21

that there are multiple solids within a single computational cell of the fluid grid.22

A standard approach to two-way solid-fluid coupling is to consider the solid velocities as boundary23

conditions on the fluid and to integrate the fluid pressure force along the boundary of the solid [44, 14,24
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5, 20, 29]. Explicitly applying these forces, as opposed to using an implicitly coupled system, results in a25

so-called partitioned scheme, which is straightforward to implement. However, disadvantages of partitioned26

approaches include stability issues, such as the added-mass instability [11, 2], as well as possibly costly27

performance due to repeated iteration of the solid and fluid solves with no guarantees on convergence.28

Monolithic schemes, where coupled solid and fluid updates are solved for simultaneously using an implicitly29

coupled system, offer remedies to these aspects of partitioned schemes.30

Monolithic two-way solid-fluid coupling schemes have been considered in a number of previous works31

[38, 37, 18, 16, 33]. In [38], the implicit, monolithic scheme was indefinite, which was remedied by the32

symmetric positive-definite (SPD) system of [37], which was in turn extended in [18] to handle compressible33

flow. Recently, [33] integrated this scheme with a framework for positivity preservation in compressible flow,34

and also opened the investigation into incorporating sub-grid solids into the coupling scheme. The implicit,35

monolithic, two-way solid-fluid coupling scheme we develop in this paper remedies certain deficiencies of and36

extends upon these previous works. Two recent interesting papers use a variational formulation [3] in order37

to simulate fluid in cut cells, including thin gaps [1] and two-way solid-fluid coupling [45]; however, it is38

unclear how to extend their topological approach to sub-grid bodies where the volume integral rather than39

the surface integral seems more appropriate. We also highlight [34], another treatment of thin gaps wherein40

the fluid degrees of freedom are discretized on the solid surface mesh, allowing for sub-fluid grid modeling.41

Consider a small sub-grid body moving to the right, as in Figure 1a. A velocity equilibration assumption42

between the solid and fluid would transfer an inordinate amount of momentum from this solid to the fluid43

that co-occupies the grid cell containing it, when in reality there may be only a small boundary layer around44

the solid transferring a much smaller amount of momentum such that most of the fluid in that computational45

cell remains largely unaffected by the solid. Moreover, this non-physical transfer of momentum happens in46

a single time step, even when that time step is infinitesimally small. For more resolved solids, such as those47

depicted in Figures 1b, 1c, and 1d, it makes more sense to consider velocity equilibration. We note that [33]48

discussed non-physical velocity equilibration for sub-grid bodies and suggested an ad-hoc parameter that49

allows one to alleviate the equilibration by controlling the amount of momentum transfer between the fluid50

and solid, albeit with no strong connection to underlying physical equations. In contrast, we show that a51

physical drag law can be introduced into the equations, providing a physically-grounded alternative closure52

to velocity equilibration. Notably, this physical model for drag can be incorporated into the implicit coupling53

solve while still achieving a symmetric positive-definite system.54

�v
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�v

(d)

Figure 1: One has to consider a number of scenarios when modeling sub-grid and under-resolved solids. (a) A small sub-grid
solid should not lose an inordinate amount of momentum by fully equilibrating with the fluid in its computational cell. (b) A
solid moving tangentially similarly should not equilibrate, but rather only transfer a fixed amount of momentum tangentially
via a viscous boundary layer. (c) Here, the fluid has no choice but to equilibrate its normal velocity as the solid pushes through
it. (d) Here, the normal velocity should equilibrate but fluid may still flow tangentially unequilibrated up and to the left.

2. Governing Equations55

The present work focuses on inviscid incompressible flow and rigid bodies for sake of exposition, though56

we note that our methodology is generalizable to other scenarios. Accordingly, we model the fluid’s motion57
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using the inviscid incompressible Navier-Stokes equations,58 {
ρ
(
∂~u
∂t + (~u · ∇) ~u

)
= −∇p+ ~f

∇ · ~u = 0,
(1)

which are affected by the presence of structures. Here, ρ is (a constant) density, ~u is the fluid velocity, p59

is pressure, and ~f represents external body forces such as gravity. We discretize the fluid using a standard60

Marker and Cell (MAC) grid [21] and denote by ~uf the vector of well-defined fluid velocity samples on61

that grid. We solve the discretized form of Equation 1 based on the projection method of [6], making a62

first-order time approximation. The projection method divides the time integration into two steps. First,63

an intermediate fluid velocity is computed, ignoring pressure terms:64

~u∗f = ~unf −∆t
(
~unf · ∇

)
~unf + ∆tρ−1 ~f. (2)

Subsequently, incompressibility is enforced via the implicit pressure projection65

~un+1
f = ~u∗f −∆tρ−1∇p. (3)

A semi-Lagrangian advection scheme [35] is applied to compute the convective terms in Equation 2, filling66

ghost cells inside solids and outside the domain as appropriate. Advection is performed using the divergence-67

free ~unf . For a purely fluid domain, incompressibility is enforced as usual by substituting Equation 3 into the68

discretized incompressibility condition of Equation 1 to obtain69

∇ ·
(
∆tρ−1∇p

)
= ∇ · ~u∗f , (4)

and solving for p.70

We only consider rigid bodies, noting that works such as [37, 30, 45] demonstrate several techniques71

for extending monolithic coupling systems to handle deformable or reduced deformable bodies. Rigid body72

dynamics are governed by the classical Newton-Euler equations. The force and torque exerted on an immersed73

rigid body are evaluated around the body’s boundary Γ:74

F =

∫
Γ

(−pn̂) ds+ fe, T =

∫
Γ

(~x− ~xcom)× (−pn̂) ds+ τe, (5)

where n̂ is a unit surface normal, ~x is a point on Γ, ~xcom is the body’s center of mass, fe and τe are75

any external body forces or torques, and p is fluid pressure as above. Solid positions and orientations are76

updated explicitly in parallel with the semi-Lagrangian advection of the fluid, noting this also changes world77

space inertia tensors (and thus angular velocities in order to keep angular momentum unchanged). Then78

body forces such as gravity are applied to obtain time t∗ solid quantities. After time t∗ fluid and solid79

quantities are obtained, a monolithic coupled system may be solved for the solid and fluid together, which80

we formulate to give solutions for the linear and angular solid velocities as well as the fluid pressure. This81

coupled system replaces Equation 4, and the resulting pressure is used to update Equation 3. Optionally, for82

a more Newmark-oriented approach, a similar coupled system would be solved in order to obtain temporary83

fluid and solid velocities for use in fluid advection and the solid position and orientation update (see e.g.84

[37]).85

3. Sub-Grid Solid-Fluid Coupling86

Given a domain Ω, the fluid pressure gradient gives rise to a net force
∫

Ω
∇pdV , where V is volume and87

∇p is the pointwise pressure gradient. On a MAC grid, one discretizes the momentum in each Cartesian88

direction independently. For example, for the x-direction dual cells, the momentum associated with the scalar89

velocity u is influenced by
∫

Ω
pxdV . Thus, under suitable assumptions, the net pressure force associated with90

an x-direction dual cell Di of a MAC grid is Ai (pR,i − pL,i), where Ai = Vi/∆x is the lateral face area of Di,91

and pR,i and pL,i are the average pressures on the right and left faces of Di. When a dual cell contains both92

fluid and solid components, this total force should be distributed between the components. For example,93

one may write94

AF,i (pR,i − pL,i) +AS,i (pR,i − pL,i) , (6)
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for some AF,i and AS,i associated with the fluid and the solid, respectively, with AF,i +AS,i = Ai. Moreover,95

if there are multiple distinct solids within Di, AS,i can be partitioned even further1, e.g.96

AF,i (pR,i − pL,i) +
∑
j

Aj
S,i (pR,i − pL,i) . (7)

Typically, on a MAC grid, one assumes a linear pressure profile within each dual cell, which is consistent97

with a hydrostatic solution where a fluid at rest stays at rest with the pressure gradient exactly canceling98

gravity. Thus, given the average pressures on two opposing faces of a dual cell, one typically computes a99

pressure gradient that is assumed to be constant throughout that dual cell. If one instead chooses to model100

sub-cell variations in the pressure gradient, then care needs to be taken in order to ensure that these sub-cell101

gradients are properly balanced by gravity in order to obtain the correct hydrostatic solution. For example,102

[8] illustrated that spurious waves develop if one does not correctly treat MAC grid pressure gradients in the103

correct sub-cell fashion near the free surface.104

Given the assumption that the pressure gradient is constant in a dual cell, one can partition the net force105

in a dual cell amongst different fluid sub-regions by simply integrating the pressure gradient separately in106

each sub-region. Moreover, if one of those fluid sub-regions were replaced with a different type of fluid and/or107

solid, the net force on that different material would need to be identical to the previously-computed net force108

using the original fluid; otherwise, using a different force would fail to correctly obtain neutral buoyancy in109

the case where the new material has the same density as the displaced fluid—this is Archimedes’ principle.110

In the case of our sub-grid solids, this means we can compute AF,i and the Aj
S,i for Equation 7 by integrating111

over the appropriate volumetric regions and multiplying by the assumed-to-be-constant pressure gradient.112

The AF,i and the Aj
S,i simply partition the pressure gradient force amongst the various materials in the cell.113

As discussed above, integrating px over Di gives Ai (pR,i − pL,i) = Vi (pR,i − pL,i) /∆x, illustrating that114

(pR,i − pL,i) /∆x is the assumed constant pressure gradient in Di. Multiplying and dividing Equations 6 and115

7 by ∆x illustrates that ∆xAF,i and ∆xAj
S,i are the appropriate terms for partitioning this pressure gradient.116

In order to correctly obtain neutral buoyancy, these should be the volumes of the associated regions, i.e.117

VF,i = ∆xAF,i and V j
S,i = ∆xAj

S,i. It is constructive to realize that this definition does not differentiate118

between the actual shape of a solid and a rectangular prism with the same volume (see Figure 2). This119

emphasizes the importance of effective cross-sectional area in the MAC grid formulation. With this choice120

of AF,i and Aj
S,i,121

VF,i

Vi
=

∆xAF,i

∆xAi
=
AF,i

Ai
,

V j
S,i

Vi
=

∆xAj
S,i

∆xAi
=
Aj

S,i

Ai
, (8)

i.e. the volume fractions and face area fractions are equivalent. Throughout the paper, we will refer to the122

conceptual equivalence of between Figure 2 Left and Figure 2 Middle as the rectangular prism construction,123

stressing that it is a natural consequence of a few assumptions on the MAC grid, including the partitioning124

of momentum between different types of dual cells, the ability for a linear pressure profile to cancel grav-125

ity and achieve hydrostatic equilibrium, the goals of obtaining neutral buoyancy, etc., as discussed above.126

Nonetheless, more sophisticated constructions are possible based on careful cut cell modeling; for example,127

using an effective solid area based on the average distance between a cell face and the unoccluded portion of128

a solid-fluid interface in a cell, the authors in [4, 28] are able to define a stable, conservative flux that yields129

accurate solutions in various compressible solid-fluid problems, including neutrally buoyant tests.130

3.1. Fluid Momentum Update131

Consider the discretization of an x-direction dual cell Di of a uniform MAC grid along the lines of132

Equation 3. The fluid momentum update is given by133

(VF,iρf,iuf,i)t = −AF,i (pR,i − pL,i) , (9)

which may be discretized in time to obtain134

un+1
f,i = u∗f,i −∆tM−1

F,iAF,i (pR,i − pL,i) , (10)

1In fact, one might also partition the fluid AF,i under various scenarios, such as when a thin shell fully separates different
fluid components.
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AS,i∆x≡

AS,iAi

∆x

Ω1

∆x

j Ωj

dV

Ω2

∆x

j

Aj
S,i∆x ≡

A2
S,i

A1
S,i

VS,i =

Figure 2: Two sub-grid solids are depicted as occupying regions Ω1 and Ω2 of a dual cell. (Left) Their total volume can be

computed by summing their individually-computed volumes. (Middle) Defining Aj
S,i = V j

S,i/∆x allows one to conceptualize

their effect as rectangular prisms, emphasizing the importance of their effective cross-sectional areas in a MAC grid dual cell.
(Right) Defining AS,i = A1

S,i +A2
S,i emphasizes their net effective cross-sectional area.

where MF,i = ρf,iVF,i. Defining p̃i = ∆tp for each face-averaged pressure p and Gi = ∆x−1
[
−1 1

]
, the135

above equation can be written as136

un+1
f,i = u∗f,i −M−1

F,iAF,i∆xGi

[
p̃L,i p̃R,i

]T
, (11)

and similar equations can be written for the y and z-direction dual cells. Then, stacking all such equations137

for any dual cell that contains some fluid results in138

~un+1
f = ~u∗f −M−1

F AFHFGF p̃, (12)

where MF is a diagonal matrix of the MF,i, AF is a diagonal matrix of the AF,i, and HF is a diagonal matrix139

with entries of either ∆x, ∆y, and ∆z. p̃ contains one face-averaged pressure for each unique MAC grid dual140

cell face adjacent to any dual cell that contains fluid; note, the same face-averaged pressure is used for both141

dual cells adjacent to a face. The gradient matrix GF has a row for every dual cell containing some fluid142

and a column for every unique face-averaged pressure. For ease of notation, we define the unitless difference143

operator ĜF = HFGF .144

3.2. Solid Momentum Update145

We define ~v as a stacked vector of solid generalized velocity degrees of freedom, e.g. translational and146

rotational velocities for rigid bodies, all the solid particle velocities for deformable bodies, etc. Each rigid147

body j has a block of entries in ~v of the form
(
~vj ~ωj

)T
for its associated linear and angular velocity. For148

each dual cell Di that body j overlaps, we define a row vector Jj
i that maps from ~v to the scalar velocity due149

to body j in Di. In the particular case of rigid bodies, the non-zero elements of Jj
i can be composed from150

two terms. The first term is a row vector chosen from the standard basis (e.g. êT1 =
(
1 0

)
, êT2 =

(
0 1

)
151

in 2D) which selects the correct component of velocity for Di. The second term maps ~v to an appropriate152

vector velocity in Di. Thus,153

Jj
i ~v = êTk

(
I3×3 ~rj∗Ti

) (
~vj ~ωj

)T
, (13)

where k = 1, 2, 3 depends on the direction of the dual cell, I3×3 is the 3 × 3 identity matrix, and ~rj∗i is154

the skew-symmetric matrix such that ~rj∗i ~a = ~rji × ~a for all ~a. A dual cell Di may contain multiple solid155

components, and we construct the block matrix Ji by stacking all relevant Jj
i . In addition, we define a matrix156

J as a stack of the Ji. Finally, we define Ẑi as a row vector that sums over the rows in J corresponding to157

Di (i.e. the rows of Ji) using weights Aj
S,i/AS,i, in order to define Ĵi = ẐiJ . This allows us to write a scalar158

average solid velocity for Di as Ĵi~v = ẐiJ~v.159
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Equation 12 applies pressure impulses −AF ĜF p̃ to the fluid, and thus pressure impulses −ASĜS p̃ must160

be applied to the solid in order to exactly conserve linear momentum with every average pressure at an161

interior dual cell face applied in an equal and opposite fashion. These impulses are distributed to the rigid162

bodies using ĴT = JT ẐT where Ẑ and Ĵ are stacked versions of Ẑi and Ĵi. The action of ẐT on −ASĜS p̃ is163

to divide the total impulse in each dual cell into individual impulses for each solid in that dual cell via area164

weighting Aj
S,i/AS,i. Then JT turns this scalar impulse into a vector impulse before applying it to the rigid165

body as a force and torque. Thus, the solid momentum update is166

MS~v
n+1 = MS~v

∗ − ĴTASĜS p̃, (14)

where MS is a block diagonal mass matrix with each block corresponding to a rigid body’s mass and inertia167

tensor.168

The moment arm ~rji points from the center of mass of rigid body j to a point in dual cell Di. Considering169

a small sub-grid solid that is neutrally buoyant in a quiescent flow, we note that any non-zero ~rji would170

apply torque to the solid, and that this torque would then create a non-zero velocity contribution to the net171

dual cell velocity. Thus, we choose the center of mass of body j as the other endpoint of the moment arm172

~rji , making ~rji identically zero in this situation. This means that a sub-grid solid contained entirely within a173

single dual cell experiences no pressure-induced torque. When the sub-grid solid happens to span more than174

one dual cell, we would like to obtain the same solution, especially since a slight coarsening of the grid or175

small perturbation of the grid would cause the sub-grid solid to once again be contained within a single dual176

cell. Our definition of a sub-grid solid is one that is small enough to be wholly contained in a single dual177

cell either directly or upon a slight coarsening or perturbation of the grid. In order to achieve the desired178

solution even when the sub-grid solid overlaps multiple dual cells, we always define ~rji as a vector that points179

from the center of mass of body j to the center of mass of the subset of body j which is contained in Di.180

This definition gives an identically zero ~rji when a sub-grid solid is wholly contained in Di, but also gives181

the same desirable solution to the neutrally buoyant quiescent flow case when the sub-grid solid happens to182

overlap multiple dual cells. To see this, note that the center of mass can be computed using the masses of183

sub-components, i.e. m~xcom =
∑

imi~xi, where m is the mass of the rigid body, and the mi and ~xi are the184

masses and center of masses of the subset of the rigid body in each dual cell Di. For a constant density185

solid, one can divide through by the constant density to obtain a similar statement in terms of volume, i.e.186

V ~xcom =
∑

i Vi~xi. Assuming a constant ∇p that contributes a force of Vi∇p in Di, and applying this force187

at the center of mass ~xi of the subset of the body in Di gives a torque on the body of (~xi − ~xcom)× Vi∇p.188

Summing this over all sub-bodies gives
∑

i (~xi − ~xcom) × Vi∇p, which is identically zero using the previous189

volume identity. In addition, the net force is
∑

i Vi∇p = V∇p, as desired.190

3.3. Composite Velocity191

The aforementioned discussion highlights the fact that sub-grid solids as shown in Figure 2 Left have an192

effective cross-sectional area which, as illustrated in Figure 2 Middle, is independent of their actual profile193

(unlike a more resolved solid) but rather dictated by their volume and the size of the dual cell. The net194

pressure gradient in the dual cell is partitioned amongst the materials within it using this effective cross-195

sectional area; thus, the velocity flux (i.e. swept volumes) should be partitioned in a similar manner in order196

to obtain consistency in the conservation of momentum. Figure 3 illustrates an example where the fluid and197

solid velocities differ, and that difference is pictorialized in a manner similar to Figure 2 Middle using the198

rectangular prism construction. As a consequence of these considerations, we define the composite velocity199

wf,i of a dual cell Di in accordance with Figure 2 Middle and Figure 3:200

Aiwf,i = AF,iuf,i +
∑
j

Aj
S,iJ

j
i ~v. (15)

Dividing through by Ai and multiplying and dividing by AS,i gives201

wf,i =
AF,i

Ai
uf,i +

AS,i

Ai

∑
j

Aj
S,i

AS,i
Jj
i ~v

 =
AF,i

Ai
uf,i +

AS,i

Ai
ẐiJ~v =

AF,i

Ai
uf,i +

AS,i

Ai
Ĵi~v. (16)
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uf,i

uf,i

uf,i

J1
i ~v

J2
i ~v

AF,i

uf,i

uf,i

Figure 3: The rectangular prism construction depiction of solid and fluid velocities in a dual cell.

In Equation 12, ~uf is defined for any dual cell that contains some fluid, and thus the face-averaged202

pressures p̃ need to be defined for every MAC grid primal cell that overlaps any dual cell that contains some203

fluid. Since Equation 4 will be discretized for each of these primal cells, wf,i in Equation 16 is defined for204

every dual cell that overlaps any such primal cell. Then, stacking the far left and far right of Equation 16205

for every such dual cell that overlaps a primal cell where p̃ is defined yields206

~wf = A−1ÂF~uf +A−1ÂS Ĵ~v, (17)

where A is a diagonal matrix of Ai. ÂF is a tall matrix consisting of rows that either multiply a single uf,i207

by AF,i for dual cells containing some fluid or are completely zero otherwise. Similarly, each row of ÂS either208

multiplies a single entry of Ĵ~v by AS,i for dual cells containing some solid or is a row of zeros otherwise.209

Figure 4: A solid wall (shaded) acts as a boundary. The y-direction dual cell grid (red) has dual cells that are fully occluded by
the wall at the bottom of the domain and half occluded on the left-hand side of the domain. When Dirichlet pressure boundary
conditions are set along the top of the domain (shown as black diamonds), x-direction dual cells (one of which is shown in
green) between two such pressure samples do not appear in Equation 4.

Both ÂF and ÂS have a row of zeros where boundary conditions are required, such as the bottom row of210

dual cells in Figure 4. Thus, for completeness in handling boundary conditions, we augment Equation 17:211

~wf = A−1ÂF~uf +A−1ÂS Ĵ~v +A−1ÂB ~wB , (18)

where ~wB is a vector of prescribed boundary wf,i values, with AF,i + AS,i + AB,i = 1 for all Di. The212

y-direction dual cells in the bottom row of Figure 4 need to be defined as boundary conditions in order213

to calculate the pressure degrees of freedom on the bottom wall. However, note that Equation 17 already214
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correctly handles the case where the wall is stationary since wB,i = 0 in that case. For dual cells on the215

left-hand boundary, Equation 17 is also sufficient as long as one correctly sets AF,i = Ai/2. This makes wf,i216

half as large as one might expect and could lead to unwanted drag forces; however, our formulation allows217

for straightforward slippage of the fluid past the solid, as illustrated in Figure 3. Thus, one can use the218

correct geometric and physical formulation near the wall boundary without artificially making half ghost219

cells or devising other ad-hoc procedures in order to compensate for the staggered dual cell arrangements220

of the MAC grid. We will continue to point out how these dual cells are handled as we further discuss our221

method. For now, in particular, these half-occluded dual cells have their AF,i and MF,i values correctly222

halved in Equation 12, although the 2’s cancel, leaving Equation 12 unchanged even though wf,i is half its223

usual value.224

Finally, note that one may choose to specify a known average pressure boundary condition such as p = 0225

on the face of any dual cell containing fluid. This pressure can then be used in Equation 3 without including226

it as an unknown in Equation 4. In turn, this pressure is not included in p̃, and dual cells overlapping the227

associated primal cell are not necessarily included in ~wf , etc. For example, specifying p = 0 on the top228

boundary of Figure 4 removes the need to specify wf,i for dual cells above those pressures. In addition, dual229

cells contained between two such specified pressures, such as the one shown in green in Figure 4, also do not230

appear in ~wf .231

3.4. Coupled System232

We enforce a volume-weighted divergence-free condition on the composite velocity via −GTV ~wf , where233

V is a diagonal matrix of dual cell volumes Vi and GT is the full divergence matrix mapping to all primal234

cells where p̃ is defined. We note that previous works such as [12] and [43] have also enforced the zero235

divergence of a volume-fraction-weighted sum of solid and fluid velocities, in the context of particle-laden236

flows. The weights are generally different than in our scheme given that such previous works are based237

on a material point method and a coupled molecular dynamics-colocated fluid grid scheme, respectively;238

nonetheless, these works also demonstrate the appropriateness of using a blended solid-fluid velocity for239

coupling the two phases, under the assumptions of incompressible fluid and impermeable rigid solids.240

Substituting ~wf from Equation 17 into −GTV ~wf gives241

−GTHÂF~uf −GTHÂS Ĵ~v, (19)

where H is a diagonal matrix of dual cell sidelengths. For the dual cells with no fluid, the corresponding row242

of ÂF is zero, meaning the corresponding column of GT does not contribute to GTV ~wf . Eliminating all such243

columns from GT results in GT
F , allowing us to write GTHÂF = GT

FHFAF . Similarly, GTHÂS = GT
SHSAS .244

Thus,245

−GTV ~wf = −GT
FHFAF~uf −GT

SHSAS Ĵ~v. (20)

Note that our GF and GS are similar to terms in previous solid-fluid coupling works, such as [18]. However,246

in prior works, the columns of GF and GS were mutually exclusive; if a dual cell Di had an associated247

column in GT
F , it would not have an associated column in GT

S , and vice versa. In the present work, mixed248

solid-fluid dual cells are not treated in a binary fashion, and as such, columns corresponding to these dual249

cells appear in both GT
F and GT

S .250

Taking the negative of Equation 20 at time tn+1, inserting Equation 12, and setting equal to zero leads251

to252

−
(
AF ĜF

)T
M−1

F

(
AF ĜF

)
p̃+ ĜT

SAS Ĵ~v
n+1 = −ĜT

FAF~u
∗
f . (21)

Then, combining Equations 21 and 14 yields the following monolithic two-way solid-fluid coupling system:253 −(AF ĜF

)T
M−1

F

(
AF ĜF

)
ĜT

SAS Ĵ

ĴTASĜS MS

( p̃
~vn+1

)
=

(
−ĜT

FAF~u
∗
f

MS~v
∗

)
. (22)

Since Equation 22 is not positive-definite, we use MINRES [32] in the numerical examples that use this254

formulation. Later in the paper, we modify the approach to be positive-definite and use a different approach255

for solving the linear systems.256
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If Equation 18 were used in place of Equation 14, −ĜT
BAB ~wB would be added to the upper term on the257

right-hand side, although this term vanishes when the wall is stationary. In addition, entries in AF and MF258

corresponding to dual cells containing boundary walls would be affected, as discussed above. However, these259

modifications do not change the structure of the system. Considering a pressure degree of freedom in the260

leftmost column of Figure 4, these modifications reduce the treatment of a y-direction dual cell from one261

that is half-filled with a wall boundary to a dual cell half as wide containing only fluid and sub-grid solids.262

Since both formulations give the same equations, one obtains the standard linear pressure profile along the263

boundary in the hydrostatic case, matching that of the rest of the domain. This allows us to easily handle264

sub-grid solids in dual cells along the boundary (as shown below in Figure 5d) without the need for special265

treatment including half ghost cells, etc. Finally, note that Dirichlet pressure boundary conditions also do266

not alter the structure of the system. Terms corresponding to homogeneous Dirichlet pressure boundary267

conditions vanish, while non-zero pressure values result in an extra term on the right-hand side.268

3.5. Hydrostatic and Neutral Buoyancy Tests269

First, we verify that we obtain the correct hydrostatic solution from Equation 22 in the absence of any270

solids. We perform a simulation for 1, 000 time steps with a fixed ∆t = 1.0 × 10−3s. We use a grid with271

17×34 cells and of size 32cm×64cm. Solid wall boundary conditions are placed on the side and bottom walls272

of the domain, as discussed, and homogeneous Dirichlet boundary conditions are set for the fluid pressure on273

the top of the domain (i.e., an open tank of fluid). These boundary conditions shrink the physical domain by274

half a grid cell on all sides. The measured L∞ norm difference between the computed fluid pressure profile275

and the analytic linear hydrostatic pressure profile ρgh across all time steps is 7.65 × 10−9, indicating our276

treatment of boundary conditions supports the correct hydrostatic solution for the fluid.277

Next, we verify that we obtain the correct static solution with coupled neutrally buoyant sub-grid solids.278

We add a circle (infinite cylinder) of diameter 0.25cm to the above domain. Both the fluid and solid have279

unit density. Figure 5 shows that the solid remains stationary over the duration of the simulation, regardless,280

importantly, of the solid’s position with respect to the grid. The figure shows the solid overlapping one, two,281

or four y-direction dual cells. Also, the results are not affected by the solid being near a solid wall boundary,282

see Figure 5d. Finally, buoyancy is still maintained for multiple sub-grid solids in the same dual cells, as283

shown in Figure 5e.284

3.6. Under-Resolved Vortices285

Even if the domain were a single computational cell, our formulation would allow a sub-grid solid denser286

than the fluid to properly fall under gravity, moving downwards in the cell while creating an upward velocity287

in the fluid in order to maintain incompressibility. This mix of upward fluid and downward solid velocities288

in a single cell gives a discrete computational approximation to a small, sub-grid vortex. Note that imposing289

velocity equilibration on this single cell would instead incorrectly freeze the solid and fluid in place.290

For the sake of exposition, we craft a simple illustrative test problem with results simple enough that291

our code can be verified via pencil and paper. Starting from Equation 22, we remove the horizontal velocity292

degrees of freedom from both the fluid and solid as well as the angular velocity degrees of freedom from the293

solid. This yields a pseudo-one-dimensional system that only performs coupling along the y-direction, with294

no solid rotational motion. We choose a domain composed of a single column of ten y-direction dual cells,295

with ∆x = ∆y = 1. Additionally, we consider only one time step with ∆t = 1 and set Dirichlet boundary296

conditions of 0 at the top of the column and ρgh at the bottom of the column, where ρ = 1, g = 10, and297

h = 10. A single sub-grid solid with density 5 is placed in the topmost dual cell and is allowed to fall from298

rest. In the case of velocity equilibration, the downward buoyant force of the solid would drag all the fluid299

in the topmost dual cell downwards with it, and via incompressibility, the entire rest of the fluid column300

would also be dragged downwards. Thus, the solid buoyancy force ends up being averaged over the entire301

domain. Alternatively, with our formulation, the solid may slip downwards through the fluid, driving the302

fluid upwards.303

For simplicity, we construct a background pressure p0 that ranges linearly from 0 to ρgh, matching the304

domain boundary conditions. Then, letting p̃0 = ∆tp0 allows us to write p̃ = p̃0 + p̃′, where p̃′ is the unknown305

perturbation of p̃0 that gives p̃. Substituting this expression for p̃ into Equation 12 still leads to Equation 22,306

except with p̃′ as the unknown (instead of p̃) and ~u∗f augmented by the effects of p̃0, i.e. M−1
F AFHFGF p̃0.307

This reformulation allows us to consider the effects of the coupling in Equation 22 on a system that already308
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(a) n = 1 configuration (b) n = 2 configuration (c) n = 4 configuration (d) n = 4 near boundary

(e) Two n = 4 solids

Ex. n ~xcom x-velocity y-velocity Angular velocity
(a) 1 (16.0, 36.0) 7.28× 10−13 2.78× 10−12 1.84× 10−6

(b) 2 (15.03, 35.9) 2.62× 10−11 1.34× 10−11 2.04× 10−7

(c) 4 (14.99, 34.82) 4.54× 10−12 2.60× 10−11 6.46× 10−7

(d) 4 (1.9, 36.75) 1.26× 10−12 3.24× 10−11 4.74× 10−9

(e1) 4 (1.9, 36.75) 2.34× 10−13 2.00× 10−12 8.78× 10−10

(e2) 4 (1.95, 34.8) 2.83× 10−13 2.36× 10−12 3.53× 10−10

(f) L∞ norms of velocity components for different grid placements of a sub-grid solid
(centered at ~xcom), simulated over 1, 000 time steps. Linear velocity is measured in
cm/s and angular velocity in rad/s. (e1) and (e2) are for the upper and lower solids.

Figure 5: One or more neutrally buoyant sub-grid solids are placed in all possible overlapping configurations in two spatial
dimensions, overlapping one, two, or four y-direction dual cells. In all cases, the object is observed to remain stationary.

includes the effects of gravity and the background pressure p̃0. Thus, the initial solid and fluid velocities of309

zero receive a downward perturbation −g∆t as well as an upward pressure force which exactly cancels −g∆t310

in the fluid-only cells, so that the time t∗ velocities in the fluid-only cells are identically zero. In the topmost311

cell that contains both solid and fluid, the relative face areas of solid and fluid allow the upward pressure312

force to also exactly cancel the downward velocity in the fluid portion of the cell. However, the upward313

pressure force on the solid’s area fraction of the cell is too small to entirely cancel the solid’s downward314

velocity. We utilize a solid in the shape of a square with total area 0.5, and thus mass equal to 2.5, resulting315

in the upward pressure force only cancelling one-fifth of the downward velocity of 10, yielding a downward316

velocity of 8.317

In a velocity equilibration formulation, the downward solid momentum of 20 would be averaged with318

the fluid in the topmost cell to obtain a downward velocity of 20/3. However, incompressibility further319

dictates that every cell in the column should have the same velocity, and so the downward momentum of320

20 is averaged over the other nine cells in the column as well, resulting in a downward velocity of 20/12 for321

every cell in the column. It is straightforward to see that adding more cells to the column asymptotes to a322

net downward velocity of zero since the solid momentum gets averaged over all the fluid in the column. This323

example illustrates how sub-grid solids are forced not only to drag the fluid in their associated mixed dual324

cells, but also to perturb a large volume of surrounding fluid in order to move.325

Let p1 be the pressure below the topmost cell such that p1− 0 gives the net upward force on the topmost326

cell. The bottom nine cells will all move downward uniformly due to incompressibility, and the net downward327

force on them is also p1 − 0. Note that both the upper and lower Dirichlet boundary conditions are zero on328

p̃′ in Equation 22 since we have already added the contributions of p̃0 into the time t∗ velocities. p1 reduces329

the downward momentum of 20 in the topmost cell to 20−p1 to obtain a net velocity of (20−p1)/3, and the330

velocity in each of the other nine cells is p1/9. Incompressibility dictates that these two velocities are equal,331

and thus p1 = 15, which asymptotes to p1 = 20 if the column is allowed to extend infinitely downward.332

Depending on how one partitions p1 = 20 amongst the components of the topmost dual cell, one could stop333

both the solid and fluid motion (velocity equilibration), or one might try to let the solid fall by driving the334

fluid upwards. If one used the typical volume-weighted pressure gradient, half of this pressure force would335

go the fluid and half would go the solid resulting in the solid falling at speed 4 and the fluid moving upward336
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at speed 10, which seems unhelpful. Therefore, we find the use of the total momentum over the total mass337

as a dual cell velocity value problematic. This is one of the key observations that led to our approach.338

In our approach, incompressibility calculations see the mixed solid-fluid velocity wf,i in the topmost dual339

cell, resulting in this example in340

p1/9 = wf,i = vn+1
s /2 + un+1

f,i /2. (23)

Then, the volume-weighted pressure gradient force distribution causes the new solid velocity to be (20− p1/2)341

/2.5 and the new fluid velocity to be (−p1/2) /0.5. Plugging into Equation 23 yields342

p1/9 = (8− p1/5) /2− p1/2, (24)

which yields p1 = 45/8, an upward velocity of 45/8 for the fluid, and a downward velocity of 55/8 for the343

solid. In the limit of an infinitely tall column, the left-hand side of Equation 24 again approaches zero. In344

this case, we obtain p = 20/3, an upward fluid velocity of 20/3, and a downward solid velocity of 20/3. Thus,345

our model allows the solid to fall, avoiding spurious velocity equilibration.346

Although our formulation allows for highly improved behavior insofar as the solid and fluid slipping past347

each other in a single cell as opposed to momentum and mass lumped formulations, it unfortunately does not348

fully alleviate these issues in a manner that is fully independent of the computational grid. In order to see349

this, we consider the same problem except with the solid located half way in between the two topmost dual350

cells, with half its area in each of them. Let p2 be the pressure just below p1, dividing the bottom eight cells351

from the top two. Then p2/8 will be the downward velocity of the bottom eight cells, and since the solid only352

occupies one-quarter of the top two dual cells, its velocity will be (20− p2/4) /2.5, whereas the fluid velocity353

will be (−3p2/4) /(3/2). Plugging into Equation 23 (with p1/8 on the left) and solving yields p2 = 160/17,354

which in turn results in different solid and fluid velocities than when the solid overlaps only one dual cell.355

In the limit where the fluid column extends infinitely downwards, the solution is p2 = 40/3. Note that we356

have ignored p1 here since its effect on the solid cancels when the solid is midway between the two top dual357

cells; however, p1 = p2/2, which makes the fluid velocities in the top two cells match. For completeness, one358

can consider any position of the solid overlapping the top two cells via the following equations:359

AS,1v
n+1
s +AF,1u

n+1
f,1 = 0

AS,2v
n+1
s +AF,2u

n+1
f,2 = 0

MF,1u
n+1
f,1 = −p1AF,1

MF,2u
n+1
f,2 = (p1 − p2)AF,2

MSv
n+1
s = MSv

∗
s − p1 (AS,1 −AS,2)− p2AS,2.

(25)

The first two equations follow from our area-weighted incompressibility formulation, and the next three360

equations are the momentum updates for the solid and fluid components in the two mixed dual cells. Sub-361

stituting the last three equations into the first two equations to eliminate the velocities results in a 2 × 2362

system for p1 and p2. Figure 6 shows the variance in p1 and p2 as the solid transitions from the top cell to363

the next lower cell. Since p2 always sees the same material above it, one would hope that it would be flat,364

but it bows downward in the figure. Figure 7 shows the velocities; again, one would hope that vs (depicted365

at the bottom) would be flat. Note how the two fluid velocities contribute equally when the solid is equally366

in both cells, but only contribute fractions of upward velocities otherwise. Figure 8 shows that the neutrally367

buoyant case correctly gives a flat line (top curve), and as the density is increased, one achieves a flatter line368

and the correct analytical solution of −10, although there is inaccurate bowing of curves in between.369

3.7. Additional examples370

It is interesting to consider the limiting behavior of the solid velocity in the column test of the previous371

section. In particular, the solid momentum update in Equation 25 suggests that as the time t∗ solid velocity372

approaches infinity, so too will the solid velocity after the solve; however, the fluid’s response increases for373

faster solid velocities. Consider the case when the solid lies entirely in the lower of the two top y-direction374

dual cells. Then, solving Equation 25 yields375

p1 = 0, p2 =
2Msv

∗
s

2Ms + 1
, vn+1

s =
2Msv

∗
s

2Ms + 1
. (26)
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Figure 6: Pressures p1 and p2 for the column example at the end of Section 3.6.
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Figure 7: Velocities for the column example at the end of Section 3.6.

For instance, when the density of the solid is 5 (and thus, the solid is 5/6 of the total mass of the dual376

cell), the solid’s velocity after one time step is 5/6 of the solid’s post-advection velocity. Additionally, as377

vns is increased, gravity and the ∇p0 forces eventually have insignificant effect on vn+1
s as compared to the378

projective ∇p′ force, as shown in Figure 9.379

Next, we study the narrow column example from the previous section as the solid falls from rest over 60s.380

The density of the solid is modified to be 1.05kg/m3 unless otherwise stated, and the time step is 1.0s unless381

otherwise stated. The total height of the column is 1024 + ∆y m, and the solid’s initial y-position is fixed at382

1024m. We numerically explore the effects of increasing the solid’s density, refining the time step, refining383

the y-resolution of the computational grid, and refining simultaneously in space and time. We ignore fluid384

advection, only applying ∇p0, gravity, and the forces from the coupled solve.385

Figure 10 shows the velocities and vertical positions of the solid at various densities, using a time step386

of 0.1s. The dotted lines indicate the trajectory of an infinitely dense solid under only the influence of387

gravity and ∇p0, neglecting the upward fluid pressure force from the coupled solve which should become388

negligible at high density. At lighter densities, the solid’s velocity more quickly reaches a terminal velocity389

(up to periodic oscillations due to under-resolved vortices), while at heaver densities, the solid’s velocity390

more quickly approaches the analytic linear solution.391

Next, we refine the time step by powers of two from 20s to 2−10s for a fixed spatial resolution of 1024392

primal y-direction grid cells. The results are shown in Figure 11. Again, the analytic trajectory of the solid393

is plotted as a dotted line based on only the gravitational and ∇p0 forces. Refining the time step results in394

the solid’s velocity following the linear analytic trajectory for a longer amount of time, before leveling off to395

a terminal velocity.396

In Figure 12, we coarsen the grid from 1024 primal y-direction grid cells up to just 1, noting that our397
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Figure 8: Solid velocities for densities varying from 1 to 160, for the column example at the end of Section 3.6.
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Figure 9: The y-velocity of the solid particle, of density 5, in the column example after one time step with varying initial
y-velocities. The independent axis is the initial y-velocity, and the dependent axis is the ratio of the y-velocity after one time
step to the initial y-velocity. Both axes are log-scaled.

formulation is equally appropriate for rectangular grid cells. At very coarse resolutions, the rectangular398

prism construction vertically smears the solid across almost the entire domain, which results in the solid399

only feeling the effects of gravity and the ∇p0 force from boundary conditions; thus, the results are in close400

agreement with the corresponding analytic curves. At finer resolutions, there are more fluid pressure degrees401

of freedom between the solid and the bottom of the domain, which results in increased influence of the fluid402

pressure force from the coupled solve and hence more retarded solid motion.403

Finally, Figure 13 demonstrates refining the example simultaneously in both space and time. We note404

that while terminal velocities are noticeably grid-dependent for sub-grid solids, they can be carefully tuned405

by introducing velocity drag, which is the subject of Section 4. The intended purpose of the examples in406

this section is not to demonstrate grid convergence of decidedly unresolved phenomena, i.e. sub-grid solids,407

but rather to provide a thorough analytical and numerical analysis of the behavior of such a formulation.408

We repeated these experiments for the falling solid in a wider column, solving the full 2D system of409

Equation 22. We place the solid at (255.5, 1024) (horizontally centered) in a column of width 511m and410

height 2044m. The results, shown in Figures 14–17, are largely similar to the pseudo-one-dimensional411

examples just discussed, though we observe that there is relatively less variation between different temporal412

resolutions.413

As an additional experiment, we simulated the pseudo-one-dimensional column example and repeatedly414

made the column narrower, while also shrinking the sidelengths of the square solid. Solid density was kept415
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constant. The results, in Figure 18, indicate that for a narrower column (higher number of refinements),416

the terminal velocity of the solid can be considerably higher than for a wider column. The narrower column417

contains less fluid and hence cannot provide as strong of an upward pressure force on the solid.418

4. Velocity Drag419

It is well known that viscous drag forces participate in momentum exchanges between fluid and solid420

components, in addition to pressure drag. This is especially true for small, sub-grid solids, where under-421

resolved viscous forces may dominate. In order to model this behavior for sub-grid solids, we augment422

Equation 9 with a drag term:423

(VF,iρf,iuf,i)t = −AF,i (pR,i − pL,i)−
∑
j

kji

(
uf,i − Jj

i ~v
)
, (27)

where kji (assumed to be > 0) is a drag coefficient for body j in dual cell Di. We may express the drag term424

in the above as425

k̄i

uf,i −∑
j

kji
k̄i
Jj
i ~v

 = k̄i

(
uf,i − Z̃iJ~v

)
= k̄i

(
uf,i − J̃i~v

)
, (28)

where k̄i =
∑

j k
j
i . Z̃i and J̃i are defined similarly to Ẑi and Ĵi from Section 3.2, except they use partial426

drag coefficients as weights rather than partial solid face areas.427

Similar to Equation 11, we obtain428

un+1
f,i =

[
1 + ∆tM−1

F,i k̄i

]−1 (
u∗f,i −M−1

F,iAF,i∆xGi

[
p̃L,i p̃R,i

]T
+ ∆tM−1

F,i k̄iJ̃i~v
n+1
)
. (29)

We substitute the definition Ki = 1 + ∆tM−1
F,i k̄i to obtain429

un+1
f,i = K−1

i

(
u∗f,i −M−1

F,iAF,i∆xGi

[
p̃L,i p̃R,i

]T
+ ∆tM−1

F,i k̄iJ̃i~v
n+1
)
, (30)

which may be stacked along the lines of Equation 12 to obtain430

~un+1
f = K−1

(
~u∗f −M−1

F AFHFGF p̃+ ∆tM−1
F k̄J̃~vn+1

)
. (31)

Here, J̃ is a matrix of non-zero rows J̃i that correspond to dual cells that contain one or more solid components431

and overlap a primal grid cell where p̃ is defined. k̄ has a row for each dual cell that contains some fluid and432

a column for each dual cell that contains some solid and overlaps a primal cell where p̃ is defined. k̄ contains433

the entry k̄i at the intersection of the row and column corresponding to dual cell Di when such a row and434

column are both present in k̄. K is a diagonal matrix of the Ki.435

The drag forces on the solids should balance the drag forces applied to the fluid. For the portion of solid436

body j in dual cell Di, the drag force acting on it is taken as437

kji

(
uf,i − Jj

i ~v
)

(32)

in order to conserve momentum. Alternatively, this can be written as438

Z̃j
i k̄iuf,i − kji Jj

i ~v, (33)

where Z̃j
i is the entry of Z̃i corresponding to solid j. (Recall from Equation 28 that Z̃i is a row vector with439

entries kji /k̄i that multiplies J~v in the middle of that equation to obtain the sum on the left of that equation440

via dot product.)441

Stacking Equation 33 for all dual cells where ~uf is defined yields442

Z̃T k̄T~uf − k̄SJ~v, (34)
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Figure 10: Increasing the density of the falling sub-grid solid for the narrow column example of Section 3.6.
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Figure 11: Refining the time step for the narrow column example of Section 3.6.
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Figure 12: Refining the y-axis of the computational grid for the column example of Section 3.6.
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Figure 13: Refining the narrow column example in space and time. Labels indicate the time step, the inverse of y-resolution.
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Figure 14: Solving the full 2D coupling system for a sub-grid particle in a wide channel at varying solid densities.
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Figure 15: Refining the time step for the wide channel example.
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Figure 16: Varying the spatial resolution of the 2D wide channel example. The labels indicate the number of grid cells in the
x-direction; the y-resolution is chosen to maintain square grid cells.
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Figure 17: Refining space and time simultaneously for the 2D wide channel example.
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Figure 18: Shrinking the width of the pseudo-one-dimensional column and the sidelengths of the solid, keeping solid density
constant. The dashed line indicates the analytic solution for an infinitely narrow column. Legend labels are the number of
refinements (the inverse of the column width).

where k̄S is a diagonal matrix of all defined kji . We note that in the above expression, k̄T scales the fluid443

velocities ~uf by k̄i, as in Equation 33. Then, Z̃T distributes those values to each solid component within444

each dual cell, such that the uf,i are weighted by the kji , as in Equation 32. Finally, as with the coupling445

term due to fluid pressure, applying JT to the expression in Equation 34 applies those drag forces to the446

solids. Incorporating both coupling terms, the solid momentum update is447

MS~v
n+1 = MS~v

∗ − ĴTASĜS p̃+
(

∆tk̄J̃
)T

~un+1
f −∆tJT k̄SJ~v

n+1, (35)

where we have used the fact that J̃ = Z̃J . Substituting Equation 31 into the above, simplifying, and then448

rearranging terms yields449 [
MS + ∆tJT k̄SJ −

(
∆tk̄J̃

)T
(MFK)

−1
(

∆tk̄J̃
)]
~vn+1

+

[
ĴTASĜS +

(
∆tk̄J̃

)T
(MFK)

−1
AF ĜF

]
p̃ = MS~v

∗ +
(

∆tk̄J̃
)T

K−1~u∗f .

(36)

Similar to the derivation in Section 3, one may substitute ~un+1
f into the incompressibility condition450

∇V · ~wn+1
f = 0 to obtain451

−
(
AF ĜF

)T
(MFK)

−1
(
AF ĜF

)
p̃+

(
ĜT

FAF (MFK)
−1

∆tk̄J̃ + ĜT
SAS Ĵ

)
~vn+1 = −ĜT

FAFK
−1~u∗f . (37)

Then, combining Equations 37 and 36 yields the following monolithic system that incorporates velocity drag:452  −
(
AF ĜF

)T
(MFK)

−1
(
AF ĜF

) (
AF ĜF

)T
(MFK)

−1
∆tk̄J̃ + ĜT

SAS Ĵ

ĴTASĜS +
(

∆tk̄J̃
)T

(MFK)
−1
AF ĜF MS + ∆tJT k̄SJ −

(
∆tk̄J̃

)T
(MFK)

−1
(

∆tk̄J̃
)
( p̃

~vn+1

)

=

 −ĜT
FAFK

−1~u∗f

MS~v
∗ +

(
∆tk̄J̃

)T
K−1~u∗f

 .

(38)

Following the discussion in Section 3, note that setting VF = AFHF and VS = ASHS (the rectangular prism453
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construction) simplifies Equation 38 to454  − (VFGF )
T

(MFK)
−1

(VFGF ) (VFGF )
T

(MFK)
−1

∆tk̄J̃ +GT
SVS Ĵ

ĴTVSGS +
(

∆tk̄J̃
)T

(MFK)
−1
VFGF MS + ∆tJT k̄SJ −

(
∆tk̄J̃

)T
(MFK)

−1
(

∆tk̄J̃
)( p̃

~vn+1

)

=

( −GT
FVFK

−1~u∗f

MS~v
∗ +

(
∆tk̄J̃

)T
K−1~u∗f

)
,

(39)

and, as expected, we recover Equation 22 if we let K → I and k̄ → 0.455

5. Symmetric Positive Definite Formulation456

It is interesting to consider how the drag coupling system of Section 4 behaves as the kji tend towards457

infinity. The form chosen for the drag in Equation 32 implies that the fluid and solid velocities equilibrate at458

time tn+1 in the limit of high drag. However, in the full coupling system of Equation 38, it is not immediately459

clear how certain terms such as the off-diagonal blocks behave as drag goes to infinity, and thus it is difficult460

to reason about the overall behavior of the system in this limit. At the very least, there are clear numerical461

issues with at least some terms in the system tending towards infinity as drag increases.462

To better understand this limiting behavior, it is natural to consider the quantity463

λ̂ = ZT~uf − J~v, (40)

which matches, for each coupled dual cell, a copy of the fluid velocity in the dual cell separately with each of464

the interpolated velocities of solids in that dual cell. Here, Z = k̄Z̃k̄−1
S , making Equation 40 the non-drag-465

weighted velocity differences from Equation 34. Z sums the appropriate entries of λ̂ for each dual cell where466

~uf is defined, and ZT makes copies of the appropriate entries of ~uf according to the number of solids in467

each solid-fluid dual cell. λ̂ is precisely the quantity that should be zero at tn+1 in the case of infinite drag.468

Thus, we aim to improve the asymptotic numerical behavior of the system by reformulating it in terms of469

λ̂. Then, Equations 31 and 35 become470

~un+1
f = ~u∗f −M−1

F AF ĜF p̃−∆tM−1
F Zk̄S λ̂ (41)

and471

MS~v
n+1 = MS~v

∗ − ĴTASĜS p̃+ ∆tJT k̄S λ̂. (42)

Using the incompressibility of ~wf and Equations 40–42, one may derive (similarly to the previous section)472

the coupling system473 
(
AF ĜF

)T
M−1

F

(
AF ĜF

)
−ĜT

SAS Ĵ ∆tĜT
FAFM

−1
F Zk̄S

−ĴTASĜS −MS ∆tJT k̄S
∆tk̄SZ

TM−1
F AF ĜF ∆tk̄SJ ∆tk̄S + ∆t2k̄SZ

TM−1
F Zk̄S


 p̃
~vn+1

λ̂n+1

 =

 ĜT
FAF~u

∗
f

−MS~v
∗

∆tk̄SZ
T~u∗f

 , (43)

which again has several problematic terms in the limit of large drag. As k̄S approaches infinity, λ̂ tends474

towards zero, making their product potentially finite. Thus we define their product as475

λ = k̄S
(
ZT~uf − J~v

)
. (44)

Using this drag force λ, we may rewrite Equations 41 and 42 as476

~un+1
f = ~u∗f −M−1

F AF ĜF p̃−∆tM−1
F Zλ (45)

and477

MS~v
n+1 = MS~v

∗ − ĴTASĜS p̃+ ∆tJTλ, (46)

18



and the coupling system becomes478 
(
AF ĜF

)T
M−1

F

(
AF ĜF

)
−ĜT

SAS Ĵ ∆tĜT
FAFM

−1
F Z

−ĴTASĜS −MS ∆tJT

∆tZTM−1
F AF ĜF ∆tJ ∆tk̄−1

S + ∆t2ZTM−1
F Z


 p̃
~vn+1

λn+1

 =

ĜT
FAF~u

∗
f

−MS~v
∗

∆tZT~u∗f

 . (47)

In this formulation, there is only one term in the system involving the drag coefficients, and this term clearly479

tends toward zero as drag approaches infinity. We stress that λ represents a physical drag force between the480

fluid and the solid and is not simply some Lagrange multiplier.481

While this system is symmetric and has certain attractive numerical attributes, it is indefinite. Thus, we482

eliminate the second row of the system by substituting M−1
S times the second row into both the first and483

third rows in order to eliminate ~vn+1, obtaining484 (AF ĜF

)T
M−1

F

(
AF ĜF

)
+
(
ĴTASĜS

)T
M−1

S

(
ĴTASĜS

)
∆t
(
AF ĜF

)T
M−1

F Z −∆t
(
ĴTASĜS

)T
M−1

S JT

∆tZTM−1
F

(
AF ĜF

)
−∆tJM−1

S

(
ĴTASĜS

)
∆tk̄−1

S + ∆t2ZTM−1
F Z + ∆t2JM−1

S JT

( p̃
λn+1

)
=

(AF ĜF

)T
~u∗f +

(
ĴTASĜS

)T
~v∗

∆t
(
ZT~u∗f − J~v∗

)


(48)
This system is symmetric positive semi-definite since it admits the decomposition485 ((

AF ĜF

)T
∆tZT

)
M−1

F

((
AF ĜF

)T
∆tZT

)T

+

((
ĴTASĜS

)T
−∆tJ

)
M−1

S

((
ĴTASĜS

)T
−∆tJ

)T

+

(
0 0
0 ∆tk̄−1

S

)
, (49)

which is the sum of three positive semi-definite matrices. Similar to the discussion in [37], we note that486

our coupling system is SPD, except in degenerate cases such as regions completely enclosed by Neumann487

boundary conditions where it is only symmetric positive semi-definite.488

5.1. Interpolating and Convolving Velocities489

Equation 40 may be extended to use alternative interpolation schemes. Similar to [33], where operators490

were defined to allow coupling to occur at arbitrary solid sample points, we may rewrite Equation 40 as491

λ̂ = H~uf − J~v, (50)

where H maps from sample fluid velocity dual cell centers to solid sample points. Note that J may also be492

made more general than was discussed in Section 3.2. In particular, we consider defining H either as piecewise493

constant interpolation (i.e., identical to ZT ), higher-order bilinear interpolation, or via a convolutional494

average. In these instances, the form of Equation 48 remains unchanged except that ZT is replaced by H495

and Z is replaced by HT .496

The size of the stencils in both the piecewise constant and bilinear interpolation schemes depends on the497

resolution of the computational grid; more refined grids sample the fluid more locally to the sub-grid solid.498

This can be problematic, as discussed in [22, 24], which point out how local interpolation of fluid velocities499

can cause increasing error in drag force computations as grid resolution increases, especially because the local500

velocity is influenced by the solid and therefore typically quite different than the free-stream velocities often501

used to experimentally measure drag coefficients. Hence, some conjecture that it may be more appropriate to502

consider an interpolation scheme that is not dependent on grid resolution. To demonstrate the ability of our503

method to handle such desired approaches, we also propose using a convolutional kernel as follows. We define504

an axisymmetric 2D quartic kernel function in polar coordinates, f(r) = D
(
r4 −Br2 + C

)
, which is centered505

at the solid-fluid coupling location and has support restricted to a closed box ΩI of width sw centered at506

the coupling location and excluding the solid geometry, see Figure 19. We choose B = s2
w in order to make507

f monotone decreasing from r = 0 to r =
√

2sw/2, and we choose C = s4
w/4 to set the minimum value at508

r =
√

2sw/2 identically equal to 0. Finally, D is chosen to enforce the constraint
∫

ΩI
fdV = 1. Given a509

satisfactory f , interpolation weights wk =
∫

ΩI∩Dk
fdV are computed for each dual cell Dk that overlaps ΩI ,510

noting that the design of f ensures
∑

k wk = 1. We discuss some preliminary results below but emphasize511

that the point of this discussion is to elucidate the generality of our scheme and of Equation 48; researchers512

and practitioners may choose their own method of interpolation for H as well as for J . Importantly, we note513

that since we use a monolithic coupling system, our method is stable for all the interpolation schemes we514

consider, even for large ∆t.515
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√
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Figure 19: An illustration of our convolutional kernel. (Left) the domain of f is ΩI (shaded red) and excludes the solid (gray).
ΩI is centered at the solid-fluid coupling location, and its outer domain is a square of width sw. (Right) Plotting f for a
diagonal cross-section of the interpolation domain. In practice we choose coefficients so that f has minima of 0 on the corners
of ΩI and is thus strictly positive on the interior.

5.2. Examples516

Since Equation 48 is SPD, we solve it using a preconditioned conjugate gradient scheme with a simple517

diagonal preconditioner. Note that we choose a drag coefficient kj for each solid body j and set kji =518 (
V j
i /V

j
)
kj , where V j

i is the volume of solid j in dual cell Di and V j is the total volume of solid j. This519

ensures that the total drag seen on each solid is independent of the number of dual cells it overlaps. Also, as520

in the previous examples, fluid advection is ignored unless otherwise stated. We re-use the two-dimensional521

wider column setup from Section 3.7 (Figures 14–17) to parametrically explore the effects of grid refinement,522

temporal refinement, and drag coefficient. For the convolutional scheme, we consider two stencil widths,523

sw = 2 and sw = 24, in order to demonstrate the effect of using a small or large stencil. Unless otherwise524

stated, we set kj = 0.05.525

We first consider only the piecewise constant interpolation scheme in order to isolate the effect of the526

introduction of velocity drag. Figures 20–22 use the same parameters as Figures 15–17, respectively, varying527

∆t, the grid resolution, and both spatial and temporal resolution simultaneously. The overall behavior528

of each of these examples is similar to the earlier figures, except the presence of velocity drag makes the529

solid particle more rapidly reach a terminal velocity in all cases. Also note that because of the slower solid530

velocities caused by fluid drag, the solid spends more time intersecting multiple dual cells and hence there531

are higher-frequency sub-grid oscillations. Figure 23 illustrates the effect of varying the drag coefficient532

kj for a fixed spatial resolution of 63 × 252 primal grid cells and a fixed time step of ∆t = 0.1s. As the533

drag coefficient increases, the solid’s freedom to move relative to the fluid is diminished, approaching the534

hydrostatic solution as expected.535

We repeat the experiments of Figures 20–22 for each of the aforementioned interpolation schemes and536

plot the superimposed results. Figure 24 shows the effect of refining the temporal resolution, as in Figure537

20. Figures 25 and 26 show the effects of refining the spatial resolution of the computational grid and the538

spatial and temporal resolutions simultaneously, respectively. In each of the plots, the apparent clustered539

curves are the different interpolation schemes for each resolution. For example, in Figure 25, the resolutions540

are the same used in Figure 21; the highest resolution of 511× 2044 primal grid cells is the topmost cluster,541

255×1020 is the cluster below that, 127×508 is the next lower cluster, and the other five coarser resolutions542

are all in the bottom cluster. That is, all the interpolation schemes seem to behave similarly, and on coarser543

grids, they seem to be independent of grid resolution. Of course, this does not mean that there are not544

examples where one might prefer one interpolation scheme over the other.545

5.3. Handling More Particles546

One can add collision processing to our time integration loop in order to treat particle-boundary and547

particle-particle collisions. We propose an iterative scheme for collision resolution that is performed after548
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Figure 20: Refining the 2D wide channel example in time, using the velocity drag system Equation 48; labels indicate ∆t.
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Figure 21: Varying the spatial resolution of the 2D wide channel example, with velocity drag. The labels indicate the number
of grid cells in the x-direction; the y-resolution is chosen to maintain square grid cells.
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Figure 22: Refining the 2D wide column example simultaneously in space and time. Labels indicate ∆t.
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Figure 23: Varying the drag coefficient for the 2D wide column example. Labels indicate values of kj .
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Figure 24: Refining the time step for the 2D wide column example for each interpolation scheme. All interpolation schemes
behave in a similar fashion.
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Figure 25: Solving the drag coupling system for a sub-grid particle in a wide 2D channel at varying spatial resolutions for each
interpolation scheme. The different interpolation schemes seem to cluster; the clusters represent decreasing grid resolution from
top to bottom. The lowest resolutions appear to overlap in the bottommost cluster.
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Figure 26: Refining both the spatial resolution and time step for the 2D wide column example. Clusters of curves represent
increasing spatiotemporal resolution from bottom to top.

advancing solid positions but before applying explicit forces like gravity. For each of the n iterations, the549

following steps are performed:550

1. Handle particle-boundary collisions. If a solid particle has moved outside a side of the fluid domain551

with open-container Dirichlet boundary conditions, such as the open top of a domain, we delete it from552

the simulation. If a particle has penetrated a dual cell with a solid wall boundary condition, we move553

the particle along the opposite direction of its velocity vector until it exactly touches the wall but does554

not penetrate it, and project out the component of the particle’s velocity in the direction normal to555

the wall.556

2. Handle particle-particle collisions. We build a map at the start of each time step that lists nearby557

particles for a given solid particle. For each of these neighbor particles, we perform a standard analytic558
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geometric collision check, draw a line between the two particle centers, and move the two particles559

apart along that line until they touch but do not interpenetrate. The collision is treated in a perfectly560

inelastic fashion, updating both particles’ velocities so that they have no components pointing towards561

each other.562

A final particle-boundary collision check is performed after n iterations in order to enforce as a hard constraint563

that all solids should be within the fluid domain. As noted, this scheme is iterative and does not necessarily564

resolve all particle-particle collisions. However, for sufficiently large numbers of sufficiently small particles,565

this algorithm will capture the bulk of the collision dynamics; and importantly, it is cheap to compute even566

with many particles since it only scales linearly with the number of solids. Finally, we note that in order567

to achieve improved accuracy, we repeat the steps of advancing solid positions and processing collisions m568

times for each time step, using a time step of ∆t/m for each “substep” (m = 10 in all of our experiments).569

Having added collision processing to our scheme, we briefly consider an additional single-particle example,570

which was proposed in [17]. A tank of fluid with an open (homogeneous Dirichlet) top boundary and solid571

wall boundary conditions on the other boundaries is created with dimensions 2cm × 6cm (excluding the572

boundaries). A circular particle of radius 0.125cm is initially placed at (1cm, 4cm), with the origin taken to573

be the bottom left of the fluid domain (i.e. again excluding the boundaries). The particle is allowed to fall574

under the influence of gravity and drag, and it eventually collides with the bottom wall. Two different solid575

densities are considered: 1.25g/cm2 (Figure 27) and 1.5g/cm2 (Figure 28). We use a spatial resolution of576

4 × 12 primal grid cells in both cases, so that the solid is sub-grid, and a time step of 0.025s. We compare577

our method with the results of [17, 42, 23]. In both test cases, we are able to produce results that are in578

line with previous studies of this example in the literature. We note that the drag coefficients we used,579

kj = 2.25 for Figure 27 and kj = 1.75 for Figure 28, were hand-chosen in a few minutes of manual tuning.580

We stress that the emphasis of our method is to enable simulation of sub-grid particles with flexibility for581

modeling dynamics such as drag, rather than to prescribe any particular empirical relation for drag forces and582

coefficients. Moreover, the comparison works also treated viscous fluid rather than inviscid incompressible583

flow; as such, our drag coefficients must attempt to account for viscous effects. With an extremely coarse584

grid (48 grid cells versus e.g. 120k in [23]), a very coarse time step (2.5 × 10−2s instead of e.g. 1 × 10−4s585

in [23]), and without separate treatment of viscosity, our method is still able to (quite efficiently) produce586

results that closely align with literature values. Moreover, since our particle-boundary collision method is587

exact to numerical precision, we suffer no spurious numerical overshoots or oscillations when the particle588

hits the bottom wall; its y-position and velocity reach and remain constant at the correct values. This is in589

contrast to [17, 42, 23], which all use repulsive force models to attempt to avoid interpenetration; one could590

argue that such models may be more appropriate when attempting to resolve lubrication forces, viscous591

boundary layer effects, etc., but these are likely unable to be resolved anyway for very small particles and592

introduce numerical issues not present with our scheme.593

To demonstrate the effect of the collision processing algorithm, we take an open tank of 2m×6m and place594

1,000 solid circular particles approximately uniformly randomly distributed within a circle of radius 0.5m.595

The solid particles are given diameter 1.0cm and density 5.0kg/m2. The particles are allowed to fall under596

gravity. A time step of 0.1s is used, and each particle has a drag coefficient of kj = 0.1. Figures 29 and 30597

show the results of this simulation using zero and three iterations of our particle-particle collision processing598

scheme, respectively. In both results, we observe cavitation of the circular arrangement of particles due to599

the vortices that form in the fluid flow field; this causes some particles to reach the bottom of the tank more600

quickly, while it causes other particles to swirl upwards with the fluid. Most particles reach the bottom601

of the tank after about 300 time steps. We also observe that preventing interpenetration of particles has602

visually significant effects on the results, particularly evident as the particles settle, e.g. Figure 30f versus603

Figure 29f. The total kinetic energy of all the solids, as well as the total kinetic energy of the fluid, is shown604

for the case of Figure 30 in Figure 31.605

In order to show that our system can scale to simulate many coupled solids, we repeat the previous606

experiment but instead fill a rectangular region with 100,000 randomly-placed circular particles of uniform607

density 1.05kg/m2. We use a computational grid of 32× 96 primal grid cells and a time step of ∆t = 0.1s.608

We use 10 solid substeps per iteration and a uniform solid diameter of 0.5cm. The results of this simulation609

are shown in Figure 32. By t = 400, the majority of the particles settles in the tank, though the light density610

of the solids means that some particles near the top of the domain are still settling at that time. At this611

point, we pause to stress how well the particles settle and pack without the use of a material point method,612
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Figure 27: The single-particle sedimentation test of Section 5.3 with solid density 1.25g/cm2. We carefully manually digitized
the data from [17, 42] and plotted our estimates as points in the figures. The authors of [23] provided their data at very small
time steps, and thus it is shown as a line in the figures2. Our simulation used only 40 time steps, all of which are shown in the
figures.
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Figure 28: Same as Figure 27 except with solid density 1.5g/cm2.

plasticity model, etc.; simply treating solid-fluid coupling with accurate buoyancy captures this interesting613

behavior.614

As another large-scale example, we again place 100,000 particles uniformly randomly in a rectangular615

region of the tank, similar to the previous test. However, each particle is now given one of three distinct616

densities: the upper group of heavier particles has density 2.0kg/m2, the middle group of particles has density617

1.0kg/m2, and the lower group of lighter particles has density 0.01kg/m2; all solids use a drag coefficient618

of kj = 0.1. A time step of ∆t = 0.1s is used. The results are shown in Figure 33. The heavy particles619

quickly flow downwards, while the light particles tend to flow upwards. After they swirl past each other, the620

majority of the light particles leaves the domain, while the majority of heavy particles settles at the bottom621

of the tank; a mixture of neutrally-buoyant particles with straggling light and heavy particles is still present622

in Figure 33h. Finally, we observe that some columnar clustering occurs near the centerline of the domain623

early on in both Figures 32 and 33, and note that clustering of particles into columns has been observed624

in other sedimentation simulations [41, 27]. This makes sense in the context of Rayleigh-Taylor instabilities625

where plumes of lighter fluid bubble upward and spikes of heavier fluid jet downward.626

2Note that their data is more oscillatory than what appears in the paper; the authors report using a smoothing for the paper
(personal communication).
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(b) t = 1.0
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(c) t = 2.5
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(d) t = 5.0
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(e) t = 15.0
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(f) t = 30.0

Figure 29: 1,000 particles fall in a tank, using zero iterations of particle-particle collision processing. There appear to be
many fewer solids towards the end, compared to Figure 30, due to the very large number of incorrectly overlapping particles.
Cell-averaged fluid velocities are shown as pink vectors. Velocity and solid geometries are uniformly scaled for ease of visibility.
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(b) t = 1.0
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(c) t = 2.5
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(d) t = 5.0
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(e) t = 15.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

(f) t = 30.0

Figure 30: 1,000 particles fall in a tank, using three iterations of particle-particle collision processing. Cell-averaged fluid
velocities are shown as pink vectors. Velocity and solid geometries are uniformly scaled for ease of visibility.
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Figure 31: The total kinetic energy of all the solid particles (left) and all of the fluid dual cells (right) over time for the example
of Figure 30. Kinetic energy peaks as particles fall in the fluid, then quickly falls off as particles settle. The total solid kinetic
energy contains a few sharp dips corresponding to collisions with walls, which reduces kinetic energy of the particles.

6. More Resolved Solids627

While we have thus far concentrated on small particles and coarse computational grids, it is natural to628

consider what happens to our scheme when a solid becomes large enough relative to the spatial resolution629

of the grid so that it entirely contains several or more grid cells. Our composite velocity formulation, as630

discussed in Section 3.3, naturally accounts for this case—fully solid dual cells simply have wf,i as the631

appropriate interpolated solid velocity, and pressure degrees of freedom are not needed between fully solid632

dual cells. Thus, the structure of the coupling equations, e.g. Equations 22 and 48, automatically remains633

valid without any changes or specialized boundary conditions for more resolved solids. Moreover, since we634

assume the rectangular prism construction throughout, behavior such as neutral buoyancy is still handled635

correctly for more resolved solids.636

We consider the behavior of more resolved solids under our formulation in Figures 34–35, using the same637

solid and computational domain as Figures 27–28. Velocity drag is ignored for these basic tests. As such, the638

velocities attained by the falling sphere in Figures 34–35 are significantly more negative than those in Figures639

27–28, though the overall behavior is similar. First-order self-convergence (average order 0.93 for velocity640

and 1.00 for position) is observed in Figure 34 as the time step is refined, using a fixed computational grid641

resolution of 64× 192 primal grid cells. First-order self-convergence (average order 1.08 for velocity and 1.04642

for position) is also seen as the example is spatially refined using a fixed time step of ∆t = 0.002s, see Figure643

35. Note the oscillations that sub-grid solids admit as they cross dual cell boundaries become increasingly644

insignificant in the case of more resolved bodies. We also consider refining simultaneously in both space and645

time, as shown in Figure 36. In this test, first-order self-convergence emerges as the computational grid and646

time step are refined, although convergence is degraded at very coarse resolutions.647

6.1. Comparison with Klein et al.648

Similar to our method, [12, 43, 28, 4] and others use schemes where solid and fluid fluxes are decomposed649

based on volume fractions. For the sake of comparison with [28, 4], consider a flux in the positive x-direction650

through a computational cell with the geometry shown in Figure 37a. We note that both the method of [28, 4]651

and our method use the same fluid flux through the “unshielded” region of the cell unoccluded by any solid652

in the direction of the flux. For the “shielded” regions of the cell, our rectangular prism construction yields653

the effective geometries shown in Figure 37b, while [28, 4] obtain the geometry shown in Figure 37c using654

the average distance from the cell face to the solid-fluid interface. Nonetheless, both approaches result in655

an identical volume-weighting of the solid and fluid fluxes. The efficacy of our different visual interpretation656

can be better seen in Figures 37d, 37e, and 37f, where the same geometry is shown vertically instead of657

horizontally. In the case of incompressible flow and buoyancy, Figure 37e depicts a solid with its natural658

width for the upward-pushing pressure, whereas Figure 37f depicts the solid as wider and requires devising a659
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(a) t = 0 (b) t = 5.0 (c) t = 10.0 (d) t = 30.0

(e) t = 40.0 (f) t = 60.0 (g) t = 100.0 (h) t = 400.0

Figure 32: 100,000 particles fall in a tank, demonstrating sedimentation behavior. Cell-averaged fluid velocities are shown as
pink vectors. Velocity vectors and solid geometries are uniformly scaled for ease of visibility.
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(a) t = 0 (b) t = 1.0 (c) t = 2.5 (d) t = 5.0

(e) t = 10.0 (f) t = 50.0 (g) t = 100.0 (h) t = 500.0

Figure 33: 100,000 particles of varying density flow past each other. Velocity and solid geometries are uniformly scaled for ease
of visibility. Numbers in the legends indicate how many particles with a given density are still in the domain.
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Figure 34: Refining the more-resolved sphere drop example in time. Labels indicate the time step used. We measure self-
convergence at t = 0.25, obtaining rates 0.44, 0.70, 0.89, 1.09, and 1.56 for velocity (average 0.93) and 0.57, 0.81, 0.95, 1.12,
and 1.55 for position (average 1.00).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

14

12

10

8

6

4

2

0

So
lid

 v
el

oc
ity

 (c
m

/s
)

16
32

64
128

256
512

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

So
lid

 p
os

iti
on

 (c
m

)

16
32

64
128

256
512

Figure 35: Refining the more-resolved sphere drop example in space. Labels indicate the number of x-direction primal grid
cells used; the y-direction resolution is chosen to maintain square grid cells. We measure self-convergence at t = 0.25, obtaining
rates 0.93, 0.64, 1.18, and 1.57 for velocity (average 1.08) and 0.80, 0.69, 1.13, and 1.56 for position (average 1.04).
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Figure 36: Refining the more-resolved sphere drop example simultaneously in space and time. Labels indicate the number of
x-direction primal grid cells used; the y-direction resolution is chosen to maintain square grid cells. The time step varies by
powers of two from 2−8 at the coarsest grid resolution to 2−12 at the finest resolution. We measure self-convergence at t = 0.25,
obtaining rates −1.49, 0.40, and 1.43 for velocity and −0.45, 0.45, and 1.39 for position.

sub-cell pressure. We note that this distinction matters when thinking of applying a fluid pressure p across a660

face area A, and that both models give the same answer when considering the volumetric pressure gradient661

V∇p. We caveat that there may be situations, especially in compressible flow, where the conceptualizations662

in Figures 37c and 37f are more useful.663

6.2. Mixing Sub-Grid and More Resolved Solids664

Finally, we demonstrate the behavior of our method when simulating sub-grid and more resolved bodies665

simultaneously. We place a more resolved circle in the large tank of Figures 29–33 and make it stationary666
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Figure 37: Actual ((a), (d)) and effective solid geometries for a trapezoid and a triangle under our rectangular prism construction
((b), (e)) and the interface shielding of Klein et al. [28, 4] ((c), (f)). (a–c) consider a flux in the positive x-direction, while
(d–f) consider a y-direction flux. Both methods compute fluxes using effective solid geometries based on volumetric information
about the portion of a solid in a computational cell.

by giving it neutral density and resetting its velocity to zero after each coupled solve. We then add 10,000667

sub-grid particles in the tank and observe the results. As before, we use a time step of ∆t = 0.1s, a spatial668

resolution of 32 × 96 primal grid cells, and a drag coefficient of kj = 0.1 for all of the solids. Figure 38669

shows the case when the sub-grid particles are heavy (density ρ = 5.0kg/m2) and settle around the more670

resolved circle, and Figure 39 shows the case when the small particles are light (density ρ = 0.01kg/m2) and671

flow around the more resolved circle and out of the tank. In both cases, we notice that our simple collision672

algorithm causes some small particles to temporarily stick to the more resolved solid (e.g. in Figures 38h673

and 39h), though these small particles do eventually move around the larger circle.674

We combine sub-grid and more resolved moving solids in the simulation shown in Figure 40, which uses675

3,536 randomly-placed solids of random radius and density. Sedimentation behavior is observed to roughly676

correspond to density: the heaviest solids tend to settle at the bottom of the tank, while lighter solids tend677

to flow upward out of the tank. We note that when running this simulation, we encountered nonphysical678

situations where so many solids overlapped in a dual cell that the computed fluid volume fraction was679

negative, despite repeated iterations of solid-solid and solid-boundary collision processing. To alleviate this,680

we modified our collision processing algorithm by adding a “shock propagation” step as in [19]. We sort all681

the solids in ascending order according to their minimum y-coordinate; then, for each solid in the sorted list,682

we resolve any collisions with objects below the current solid by moving the current solid vertically upwards.683

This sweep resolves all collisions in the domain; however, we note that this step is an overconservative684

mechanism applied only in the rare case when too many solids are overlapping. While not the focus of our685

work, more sophisticated collision processing algorithms are discussed in [19] and the references therein.686
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(a) t = 0 (b) t = 2.5 (c) t = 5.0 (d) t = 10.0

(e) t = 25.0 (f) t = 50.0 (g) t = 100.0 (h) t = 200.0

Figure 38: 10,000 heavy sub-grid particles (density ρ = 5.0kg/m2) settle around a stationary more resolved sphere. Velocity
and solid geometries are uniformly scaled for ease of visibility.
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(a) t = 0 (b) t = 2.5 (c) t = 5.0 (d) t = 10.0

(e) t = 25.0 (f) t = 50.0 (g) t = 100.0 (h) t = 200.0

Figure 39: 10,000 light sub-grid particles (density ρ = 0.01kg/m2) flow upward around a stationary more resolved sphere.
Velocity and solid geometries are uniformly scaled for ease of visibility.

33



(a) t = 0 (b) t = 2.5 (c) t = 5.0 (d) t = 10.0

(e) t = 25.0 (f) t = 50.0 (g) t = 100.0 (h) t = 200.0

Figure 40: 3,536 more resolved and sub-grid solids of random density and radius flow in an open tank. Solids are colored
according to density: red is light, green is neutral, and blue is heavy. Densities range from 0.5kg/m2 to 1.5kg/m2; legends
indicate the average density of the extant solids at each time.
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7. Conclusions and Future Work687

We have presented a monolithic, symmetric positive-definite, two-way coupling system for incompressible688

flow and rigid bodies of various scales. In particular, our scheme naturally handles the coupling of solids that689

are much smaller than the size of a computational grid cell up through solids that are large enough to be690

resolved by many grid cells. We incorporate velocity drag into our fully-implicit coupling system, enabling691

more appropriate physical behavior especially for small solids. Additional features of our method include692

correctly handling the case of neutral buoyancy for sub-grid and more resolved solids, and the ability to693

derive an efficient SPD formulation allowing us to run examples with large numbers of solids. Moreover,694

we remarked upon the generality of our approach to support other models for face area fractions, drag695

coefficients, fluid and solid velocity interpolations, etc.696

There are a number of possible avenues for extending the present work. For instance, one may consider697

the treatment of dynamic thin shells such as parachutes in surrounding flow. For a grid cell containing a698

segment of the parachute, one may wish to define multiple AF,i for the distinct fluid components of the cell,699

which are separated by the shell and thus should be allowed to travel with different velocities. On a similar700

note, one may consider multimaterial flows, where it should be possible for fluid components within a grid701

cell to travel at differing speeds due to their distinct material properties. In addition to extensions of the702

fluid area fractions, one may consider different models for the Aj
S,i. For instance, one may seek models for703

Aj
S,i that produce more accurate motion in situations such as those depicted in Figure 1d.704

We are also interested in the application of our method to the simulation of particle-laden flow and705

sedimentation, as studied in e.g. [12, 43]. Our coupling scheme does not suffer from stability issues associated706

with explicit drag forces as discussed in those works, and we are not limited to small time steps. However, for707

specifically targeting engineering applications of particle-laden flow, one would likely need to more carefully708

model inter-solid forces, such as Drucker-Prager elastoplasticity, for more dense packing, etc. More broadly,709

we note that while papers like [12] come from the computer graphics community, many ideas in graphics710

are equally applicable in computational physics; for instance, the affine particle-in-cell method for fluid711

simulation [25, 26], a material point method for snow simulation [40, 13], simulation of cutting and crack712

propagation in triangulated domains [39, 36], and the particle level set method [9, 10].713

Finally, we are interested in using computer vision and machine learning techniques to enhance our714

simulation methods, inspired by the discussion in [15]. In particular, we remark that drag coefficients715

greatly affect the motion of small solid particles in fluid, yet they are usually based on empirical models716

which might have errors on the order of 10% [7]. Thus, we are interested in the possibility of creating a717

“database” of drag coefficients and building a statistical model on top of this collection which could be718

queried in order to automatically assign accurate drag coefficients to solids during a simulation. An ongoing719

project includes using high-speed cameras and computer vision techniques to automatically collect samples720

for such a database from real-world experiments.721
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